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Cn Some Open Problems of Approximation Theory*
P. TurAx

Communicated by Oved Shisha

In re mathematica ars proponendi gquestionem
pluris facienda est, quam soivendi. {In mathe-
matics, the art of formuiating a problem is mcre

valuable than thar of solving it}

G. Cantor

i, The present paper contains (with some additions)
held in Summer 1975 at the Université de Montreal. it does
1‘csnhs with the exception, perhaps. of §73. It is mainly a
some copen problems, to which I was led by \\or'*
for a long time. The problems are of various degrees of diffi
arranged in that order. { shall indicate the problems whuh did

with me. The most frequently mentioned name will be P. Erdos, wh

Ba
B
B

the genre “‘problem-paper” and who has been working wit
years in anproximation theory. Even if all or some of th

do rot satisfy the above-quoted maxim of Cant 1!1 th n}\ th
them are problems worthy of study.

]. LAGRANGE INTERPOLATION

-

2. Perhaps it would be interesting tc dig to the roots of 0

to indicate its historical origins. Newton, who wanted to draw conelusicrns
from the observed location of comets ai eq.um stant times as to their location
ar arbitrary times arrived at the problem of determining 2 “geometric”
curve passing through arbitrarily many given points. He solved this problem
by the interpolation polynomial bearing his name. e

his result is revealed by his letter to Oldenburg of 1676, in which he wrote
that this was one of the most beautiful results he had ever achieved. Newton
uses his formula to give the exact value of j f(x) dx in terms of the values
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24 P. TURAN

of f(x,) when f(x) is a polynomial of degree n, and x, = a ~ (b — a@)/n) v
(v = 0,..., n). His student Cotes called this quadrature formula “pulcherrima
et utilissima regula” and calculated its coefficients for » < 10. This work,
based on Newton’s interpolation formula, must have bee quite awkward.
Application of Lagrange’s interpolation formula would have simplified
it, but that was published only in 1795. Gauss’s quadrature formula was
also motivated by astronomy, namely by the investigation of the orbit of
the planet Pallas. How important this formula was for Gauss is shown by
the fact that unlike many other results, this one was not only worked out
in his diary but was also published, even prepublished. The essential novelty,
compared to Newton—Cotes’s formula, was that Gauss used the zeros of the
nth Legendre polynomial instead of equidistant points of observation. His
treatment was later greatly simplified by Jacobi.

Thus we see that interpolation and the theory of mechanical quadrature
are just two aspects of the study of functions given by a finite number of
observations.

3. Because of the notion of a function of that time, it was generally
believed that Newton—Cotes’ quadrature formula as well as that of Gauss
converge to the integral of f(x) as n — co. Only toward the end of the last
century was it noticed by Borel and Runge that in [—1, 1] (which is no
restriction of generality), for the quadrature formula using equidistant points,
even such a function as (1 4 x?)~! can be “bad.” The Newton—Coies pro-
cedure can diverge even for functions analytic in a domain containing the
interval [—1, 1]. This was proved by Pélya in 1933.

4. The question of convergence of Gauss’s formula was raised by
Chebyshev who conjectured an affirmative answer to it in 1874. His conjecture
was proved 10 years later by Stieltjes and A. Markov, independently. In
fact, they found that for the convergence of Gauss’s quadrature procedure,
Riemann-integrability of the function is sufficient. After this discovery, the
question naturally arose whether by replacing equidistant points by the
zeros of the nth Legendre polynomial the behavior of Lagrange interpolation
could be improved. It took another 30 years until this question was settled.
After the theorem of Stieltjes and Markov and the approximation theorem
of Weierstrass, it was hoped that there exists a (non-equidistant) system of
nodes for which Lagrange’s interpolation polynomials converge uniformly,
for every function continuous in [—1, 1]. The mathematical world was
awakened from this dream in 1914 by Faber [17] who showed that there is
no such a system.

We explain at this point our notation to be used later.

Let

Al 2 Xy > Xop " > Xpp = —1 4.1)
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be the basic points of interpolation. These points form an infinite triangufar
matrix. The corresponding Lagrange interpolation polynomial is denoted
by L {x.f, 4A), L.(f, A) or L,(f). We have

n n n
Lo fr A) = L fO0) L A) = X FE) M ) = Y FO) L. (42)
where
[zwni’v\’\ = 7 w‘n(x:, 4) — U7 G:‘;f(-‘f? S (4.3
o A~ x| @l — X,
13 n
o004 =[x —x.)=T1{&—x) {&£.4%

v=1 7

fu

Faber showed in 1914, much before the theorem of Banach-Steinhaus, but
after the constructions of Lebesgue and Haar, that for the uniform con-
vergence of the Lagrange polynomials for every function continuous o=
[—1, 1] it is necessary that

14 = ' vy« {4 <Y
M) = max 5 L9 <C (4.5)

with some constant C independent of #. On the other hand. he showed that,
for every matrix A4,

M (4) > Cloga. (4.5}

Herice (4.5) can never be true.

5. Before we proceed, I would like to mention a particularly important
class of matrices 4.
Let

p(x) =0, px)eL(—1, -+

~
L
'

As is well known, there exists a uniquely determined (up to constant factors;
system of polynomials

‘IO(x)= (h(»‘«’), ..

o
L
I

for which

sl
| ga(x) g.(x) p(x) dx =0 for n == v.
1

“
W
)
i~

These polynomials ¢, are called orthogonal polynomials with weight p. it
is well known that the zeros of these polynomials are simple and liz in
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{—1, 1). A special class of matrices 4 is the class where the nth row consists
of the zeros of g,(x). Such matrices are called p-matrices. Of special impo-
tance are the matrices belonging to the weight function

px) = (1 —x)(l = xP (x>—1,8> —1). (5.4)

The polynomials go(x), g.(x),... are the jacobi polynomials belonging to the
parameters «, B; they are denoted P/*#f(x). Their importance is motivated
by the fact that P*”(x) is the nth Legendre polynomial mentioned in §2
and P71 B(y) is the nth Chebychev polynomial T,(x) satisfying

7,(cos ) = c cos nb (c const). (5.5)
The p-matrix belonging te (1 — x)*(1 — x)? will be denoted
P(o, B). (5.6)

The Iaguerre polynomials L}(¢) and the Hermite polynomials K, ()
play an important role in the theory. They are defined by

[ Li@yretdr =0

and

A

J KM tedi =0 v=01,.,n—1;n=12,.,

respectively.

6. To motivate our first problem, we start with the following question.
Let the function f(x) be known merely by observations at the points

1 =Zx > >x, = —1 6.1)

We want to calculate it (approximately) at an arbitrary point x of [—1, -+1]
as

L(f) = Z F(6) 109, | 6.2)

We would like to diminish the effect of the errors of observation. If £ *(x,)
is the “true” value of f(x) at x = x,, and

(max | f(x,) — f5(x) =8, (6.3)
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then the most we can say is that the effect of the errors of observation doss
not exceed

§ max z () .

<1

DN
=N
i

N

We would like to select the most favorable points of observaticn. If wz are
able to choose these points so that

s

n
ma S L(x)
_max g L)
is minimal, then we have found the Lagrange interpolation which is “ieast
sensitive” to observation errors. We call this internolation the “most stable”
one for n chservations.

Using the notation of §4, we state the following (well-known)

PROBLEM L. What are the matrices A for which

Py
[N
Lh

is minimal ?

The question is settled only for n <C 4. One of the lasi papers about this
subject is that of F. Schurer (Studia Sci. Math. Hungar. 1974). It was con-
:e'**ured for a long time that the extremal matrix is P{(—4%, —4}. For small

alues of n this is false. On the other hand, it is true and known that, denoting
t‘le Chebyshev masrix P(—%, —%) by 7, one has

fog n‘ <o, (5.6)

| M(T) — %

¢, being a constant.

7. Relations (4.6) and (6.7) show that, essentially, Faber’s theorem cann
be improved. But from the point of view of stability, even a ultlpiwat ve
constant is important. Therefore, for Erdés and me it was worth‘wh Is to
investigate the asymptotic behavior of M,(4). In [15] we showed that

. .1

loglo

(]

[

2
M (A = ?bg n—c

Using a more difficult argument, Erdds later showed that

M (A) >

ey
~
NF

2,
iogn — ¢y
a

for all matrices A.
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From this and (6.7) it follows that

. 1 . 2
71;1-{1:} ( logn mn IM"(A)) S w (7.3)
Moreover, for n > 2,
. 2
‘ min M,(4) — = log nl <e5. (7.4)

8. There is another important application of (6.7) where the value of the
multiplicative constant is unimportant. Namely, it is easy to see that if

o(1
F) — 1) = —2L 8.
log ———
x1 - x2
whenever 1 = x; > x, = —1, then we have
L.(f, T) — f(x), (8.2)
uniformly in [—1, 1].
Similarly, if
M (4) < ¢, logn, 8.3)
or
L, Y ) < @ log, (8.4)

and if (8.1) is satisfied, then the uniform convergence (8.2) holds on [—1, =17,
or, respectively, on [—! -~ 8, 1 — 8]. In his monograph “Orthogonal Poly-
nomials,” G. Szegd showed that (8.4) holds for any P(x, B)-matrix. However,
it seems to be very difficult to answer

ProsrLEM II.  Is (8.4) true for every p-matrix (see §5) if cy(d) is replaced
by (8, p) and if, on [—1, =1], we have

px) = c > 07

Under an assumption on p(x) which cannot easily be verified, (8.4) was
proved by Freud [23]. On the other hand, I showed with Griinwald in 1938
[30] that, if

p(x) = T_cg—xz)ﬁ P (8.5)
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[\
N

then, for the corresponding p-matrix 2,

max > La(x; PY < oy ()2

—I<e<+i

9. Faber’s theorem asserts only that for every matrix 4 there exisis a
contiruous function fy(x) such that its Lagrange interpolation polynomials
do not converge uniformly to fi(x). Thus, it would still be possible that for
some matrix 4, its Lagrange interpolating polynomials for some continuous
function f{x) converge to f(x) for every xe[—1, 1] Even this is false,
as Bernstein [5] proved in 1931. He showed that, for each matrix 4, there is
a function fi(x) e C[—1, —1], and a point in [—1, 1] for which the values
of L,{fi: A) are unbounded as n — 0. The proof is easily accomplished
by strenghtening the result (4.6) of Faber to

! 1
Jnax, Z L ax, A > cla, b) log

aan
)
=

where [a, b] is an arbitrarily small subinterval of [—1, +1]. Actually, for
this purpose, it suffices to extablish that

I ma, 3l A = ®

[

Stiil stronger phenomena of divergence were discovered in 1935 by G.
Griinwald [28, 29] and (independently) by Marcinkiewicz [37] in the case
of the T-matrix which can be considered as the ““best” one. They showed the
existence of a continuous fy(x) such that L (f,, 7) is unbounded everywhere
in {—1t, ~11as n —> oc. To proxe this, in addition tc many deep ideas, it

was aise necessary to show that ZV~1 1], o{x, T) is unbounded as n — 0.

Erdds [14] proved in 1958 that, for every matrix 4. we have

Iim Z La(x, A), = almost everywhere.

b ude ol

oy
D
s
e’

The following question is still open:

ProBLEM I (P. Erd6s). Does there exist, for every A, a function
5 € CI—1, —1] with the property that

1?[2 l L?z(fa ’ A)i = {9‘!:}

JSor all x € [—1, 1] except possibly for a set of meastire zero?
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The fact that the answer is negative if “almost everywhere” is replaced
by “everywhere” is shown by special matrices of the form

There s another :spect which makes the theorem of Griinwald-
Marcinkiewicz very imcresting. It is easy to see that L,{ f. 7) can be written as

n—1
ag -+ Y, a,cosrb,

r=1

where

aﬁd, forr =1,

.

“Il\)

2:: (cos k2_1 )cosrz—kz?;L

This is similar to the (n — 1)th partial sum of the cosine Fourier series of
f(cos 0). That theorem could be a basis for the conjecture that the Fourier
series of a continuous periodic function can be everywhere divergent, and
according to the theorem of Carleson, this is false.

10. In the introduction to our paper [9], Erdos and 1 were very cautious
in making predictions about the possibility of convergence of L,(f, A)
at x = X, to a value different from f(0) for some matrix 4. At the end of the
paper, however, we made three remarks. First, as was shown by
Marcinkiewicz, with the notation (5.6), that for 4 = P(%, 1), the Lagrange
interpolation polynomials at a point x cannot converge to anyihing but the

value of the function there. Second, for 77" = P(—13, —4%), the same is true
if
Xo 7~ COS 11—7: , (k,]) =1, k and [ odd. (10.1)

Finally, for x, = cos(#/3), L.(x,,/s, ) can converge to any given value,
even to oo, for a suitable fy(x) € C[—1, —1].
The following two problems arise now in a natural way.



GCPEN PROBLEMS OF APPROXIMATION THEORY

LS

famh

ProBLEM IV. What are the properties of the set of points x not satisfying
(10.1) for which the Lagrange inferpolation polynomials L.(f., T} can con-
verge to values different from fi(x)?

PROBLEM V. How “large” is the subset of points xq of [—1, —11 for which
LA fo, A) can converge fo a value different from fo(xy) with a given A and an
appropriately chosen fy(x)?

)'L

L. | L,a(x, A)| > 7 logn (1.5

for all x e[~1, 1], except, possibly, for a set of measure not exceeding «.

o

Instead of proving (11.1) he only remarks that the proof is analogous t¢
that of (9.3) but more complicated. So we have

Prosrev VI (P. Erdds). Work out the proof of (11.1),
From (11.1) is would follow that

{ Z L(x, A |dx > 2nlogn. (1

2}

o
[

instead of this, the followig extremum problem could probably be solved
directly.

ProBLEM VII. Determine the matrices A which minimalize the integrai

P
[ % ! Lax, A dx

A o

12, We return to the subject of mechanical quadratures. In §4 I have
already mentioned that the situation here is not as bad as in the case of
Lagrange interpolation. We have to investigate the behavior of

0u() = 3. f ) [l A (12.)

where A4 is a given matrix. We can restrict ourselves to functions defined in
[—1, —i] and belonging to some fixed class of functions. Define the Cotes
numbers as

[ Lo, Ay dx = Au(d) =Ny, v=12,ma=12.. (12.2)
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A necessary and sufficient condition for the equality

lim 0.(f) = [ ) dx (123

to hold for all fe C[—1, 1] was found in 1918 by Hahn [32]. This, again,
predates Banach and Steinhaus’s celebrated theorem, and also Hahn’s
own 85-page paper in Monatshefte fiir Math. und Physik (1922), where these
questions were treaied in abstract form. The condition is

def &

A Y MA) < C, (12.4)

with C independent of .

Although, as already mentioned, the first theorem guaranteeing con-
vergence was proved in the last century (for the Legendre matrix P(0, 0)),
the.first general theorem on this subject was proven by Erdos and myself
[9] in 1934. This theorem asserts that, for every p-matrix P, and every
Riemann-integrable function f, we have

, _
tm [ (f() — Lu(f2 P p(x) dx =0, (12.5)
A=t J g
An important special case is when
px) =c >0 (12.6)
then
1
lim [ (F(x) — La(f; P dx = 0; (12.7)
n—x (]

if, instead of (12.6), we assume the weaker condition

1
——e L(—1, +1), 12.8
G € L1 D) (12.8)
then
1
lim f f(x) — L(f, P)| dx =0, (12.9)
% J_q
a result which was new even for the Markov—Stieltjes case P(0, 0). Our next
problem deals with the question whether or not the exponent 2 in (12.5) can
be improved. More exactly,

ProBLEM VIII. Does there exist a py-matrix P, such that, for some
Joe C[—1, 1], we have

lim [ 409 — Lo POI* o) dx =

H—0

for every A > 27
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A somewhat weaker form of this problem wouid be

ProBLEM 1X.  Does there exist a p-matrix Py such that, for every given
A > 2, there is an f, € C[—1, =17 with

lim | Jo(x) — Ll fa, Pt pdx) dx = o077
=X
As orientation I would like to mention a theorem of Askey {11, according
to which, for every given A > 2, there is a weight function p 112{, } such that,
with an appropriate f; € C[—1, +1], for the p,-ma‘rix P, , we have

Tim (" = Lo(fas P pal) dx — o0,

l.._

13, For more special weight functions p{x), one can expect the vaii i:v
of a stronger theorem than 12.5. In fact, Erdés and Feldheim [8] p d in

1936 that, for P = T, and for arbitrarily large integers k. we haw

lim ' @~ L, T)Zh——"’i = =0, (13.1;

whenever fe C[—1, 1].
Hence we pose

ProBLEM X (Erdds—Feldheim). [Is if true that, for every k& > 0

al
im | (f— L.(f, P dx =0 (12,2
nox g
if fe CI—1,1}, and
I 9 Hio WY
p(x) 2 (1 _ xz)l/g i {EJAJ,E

It was noticed by Feldheim in 1938 that, for an appropriate f,

( [f(x) — L(f, P&,

v -1

[

DI dx

[t

is unbounded. The general case of Ll [Ff{x) — L{f, Pla, B dx wa
treated by Askey in {1].

14. Relation (12.3) can be wriiten as

——
ok
i

lim [ ' (Lo(f, A) — f(x) dx =0
o gy
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for all f= C[—1, 1]. Now we raise the question: what are necessary and suffi-
cient conditions for 4 in order that

lim ' Lf, A) — f(x)*dx =0 (14.2)

n=>x

for every f(x) e C[—1, —1]. For A = 1, one can show that (in the notation
of (12.1)) in addition to (12.4)

Y [ Aal<e (14.3)

er

Lyn!

must also be satisfied for every set I consisting of a finite number of disjoint
intervals with total length <(§,

5 = 8(e). (14.4)

For A = 2, a trivial sufficient condition is

fl Uo(; AP dx + Y . [ G A) L(x, Ay dx | = 0(1),  (14.5)

1gv<ugn V-1

i1

and a necessary condition (according to my paper [9] with Erdos) is

nooL1
y f L.(x, A% dx = O(1). (14.6)
v=1 Y1

So we have

PrOBLEM XI. Given A > 1, what is a necessary and sufficient condition
that

1
i [ 1/ Li(f A dx =0

Jor every f(x) e C[—1, +1]?

There are further interesting questions concerning various classes of
functions, but it shall not go into details.

15. The next problem requires some more preparation. We mentioned
twice above antedecents of the Banach-Steinhaus theorem in approximation
theory. A common fecling prevailed that all convergence theorems of
interpolation theory are related to the order of magnitude of 3, i L.(x, A):.
In the paper [13] with Erd6s, we investigated the correctness of this
conjecture. It became clear that this conjecture is false if one goes a little
beyond continuity.
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More specifically, we asked what consequences can be drawn from

Mfa(ff) BN
Im =5 < (5.5
and
e Ml M’ﬁ(A )~ o (152
nox e
(0 < B < 1) about the behavior of L,(f; 4), if
f(x)e Lip,[—1, 1]. (15.3)

{The Lipschitz class Lip,[—1, —1] consists of the functions f for which
FAGY — f(xy)y < Kp|xp —x 1, if 1 <xy <xp << +1) I was not
difficult to show that, for

~~
[0y
Ly
4
-

0 <a< .
B—2

there exists an fy(x) e Lip,[—1, 1] such that

Im max |LnU0,A) = 0,

noee —l<a

In this case we say that the matrix 4 is “bad” for the Lipschitz class Lip, .
On the other hand it is trivial that, if

B<a<l, {(15.5)

then L,{f; A) — f(x) for every f € Lip, . We say that the matrix 4 is “good”
for the Lipschitz classes Lip, satisfving (15.5}.
For the Lipschitz classes Lip, where

B
B+2

,,.
h
98

e’

<o < B

.

everything is possible. In this case there are “‘good” matrices as weli as
“pbad” ones. Hence, if (15.6) is satisfied, then the behavior of the “Lebesgue
constants” M,(4) does not determine the convergence of Lagrange inter-
polation polynomials for the Lipschitz classes Lip, . Such cases where the
Lebesgue constants do not determine the convergence behavior of Lagrange
interpolation, will be said to belong to the “fine” theory of interpeclation. Now
an analogous question can be raised for any sequence of linear operators.
I confine myself to the theory of mechanical quadrature.
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ProBLEM XII. Let 0 << B < 1 be given. Consider the matrices A for which

7 D(4)

wox  plte

< (15.7)

D (4)

nox  pPTE

>0, (15.8)

Sor every small ¢ > 0. Find the largest interval
() < o < $ulp) (15.9)

Sor which the theory of mechanical quadrature is “fine”, that is, for which the
class of matrices A satisfying (15.7)-+(15.8) contains “good” matrices as well
as “bad” ones.

The existence of such an interval was shown by Szabados [48].

16. Difficulties of a new type arise if we want to extend our theorem
(12.9) on mean convergence to an infinite interval. I ran into this problem with
J. Baldzs in 1961, in connection with a physical problem. The mathematical
problem was as follows. What can be said about the Fourier transform of a
continuous function f(x), defined for x = 0, whose values have been observed
at merely a finite number of points. Since in physics it is common to assume
exponential decrease, one can formulate our question as follows: Find an
approximation to

F) &7 pe) et cos xt dr, (16.1)

~0

for x > 0, if ¢(¢) is continuous and if its values are known at given points
0<ty < <t,.

We require that the approximating function F,(x) satisfy the following
assumptions:

(a) If o(2)is a polynomial of degree k in ¢, then, for n > k, we have
Fo(x) = F(x); - (162
(b) For n — oo, we have
F(x) — F(x), (16.3)
uniformly for x = 0.

We solved this problem taking as points of observation ¢, ¢, ,..., f, the
zeros of the Laguerre polynomial L¥(z) (which are known to be positive and
simple) and replaced (t) by its Lagrange interpolation polynomial belonging
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requirement is obvmusly satisfied. Denote by L* the m atr iX of -ths 7eros
of L ( ¥}, n = 1, 2,.... Then (b) would follow if we could prove that

im [ (g(t) — Lo(g, L¥))2 et dr =0 (16.4)

n->20 v'g

under the natural assumption that

‘nn g{tye =0

forsome 0 < a <

The first mean convergence theorem for a general class of weigiit function
is contained in my paper [3] with Baldzs. If, besides (16.5} we assume only the
continuity of ¢, we cannot expect more than {1£.2). Therefore the foliow
problem arises:

10

(!'l

Prozrem X If (16.5) is satisfied and the modulus of continuiiy of it}
is given, what can be said about the behavior of | F(x) — F{x)?

17. From the above-mentioned paper with Baldzs it becomes clear thas
ong can take

7

p=1

where
. def % . . -~
B,a(x) = ; Lu(t, L*) e cos tx dr. (17.2)
It is easy to see that this is a rational function in x which can be
explicitly. On the other hand, it is difficult to cziculate it for larg

ProBreM X1V, Find an asymptotic formula for 4,,(x), for n — oc, whick
holds uniformly in v and in x.

dl

I think, what is most esssential here is that £',(x) gives the exact value of
F{x) for a “*dense” set of (). | intend to return later to problems relatec io
this one.

We do not state here separately similar probiems for other transfor
instance, the Hankel transform.

I[I. HERMITE-FEJER INTERPOLATION

18. Various types of questions can be raised, in connection with the
inspired remark of Fejér’s that, sometimes, conclusions on the matrix 4
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can be drawn from properties of the fundamental functions, or of the Cotes
numbers of various interpolation formulas. For instance, using the fact that
the Cotes numbers belonging to the zeros of the Legendre polynomials are
non-pegative, Fejér obtained the result that the difference between two con-
secutive zeros of the Legendre polynomial tend to zeros uniformly as n— co.
In fact, a much stronger statement can be made. I showed this with Erdos
in 1938 and 1940 in our papers [10, 11]. For instance, the difference between
two consecutive zeros of the Legendre polynomial p{*”(x) is of the exact
order 1/n. The question whether the assumption (using the notation (12.2))

Ap =0 (v=12.,mn=12.) (18.1)

gives a non-trivial interval for the zeros, seems to be much more difficult.
So we pose

PrOBLEM XV. Suppoxe that (18.1) holds. For each pair (v, n), determine
the exact interval to which x,, belongs.

19. After the discovery of Faber, the following question naturally arose:
Does there exist a procedure different from Lagrange’s interpolation which
is “efficient” for the class C[—1, 11?7 Immediately after Faber’s proof of his
theorem, Fejér discovered that the situation changes if we consider Hermite
interpolation, that is, the polynomials

H(x; f; A) = Hu( f, A)
of degree at most 2n — 1, characterized by the properties

Hn(xvn =f; A) :f(xvn) (V - 1’ 27"'9 n)’
dH(x4; [; A)

i —— = Vin (given). (19.1)
These polynomials can be written as
r=1 v=1

For the fundamental functions of the first and the second kind Fejér
found the relations (using the notation of (4.3)—-(4.4)):

e, 4) = |1 — 252 0 — )l AP,

(19.3)
&on(x; A) = (X — X,) La(x; A)%
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Lhd
2

In 1916 he showed [18] that

gniformly in [—1, 1], for every fe C[—1, 1], provided that

o~
Yo
D
¥3]

This result was further improved by him in 1930 [20]. Namely, he replacec
condition (19.5) by the weaker one

n A\
s = — {18 63
JVﬂ 0( log'y! }, '!L.I.E
uniformly in v. (This result cannot be improved.) In 1932 Szegd [54] proved
a similar result for Jacobi matrices P(x, B) (see (5 ) on[—1+¢1— €

B.SSIIE”:EI‘;g

Yon = O(1). (197

Because of our theorem (12.5), one could expect that there is a general con-
rwce theorem for the matrix 4 = P corresponding to the weight function
(‘c\ hynl

D

px) = c > 0. (19.8}
Strangely enough, nothing really interesting is known in this direction. In
1854 1 noted that there is a convergence theorem if p(ces &) sin 0 is positive
and continuous in 0 < 8 <7 and if

| f(x) —flxa) = O() [log %y — X, | 717,

The reason for this is that the above condition on p assures the validity
asymptotic formula of S. Bernstein for the orthogonal polynomlal

elonging to p(x). This result was improved in 1954 by Freud [24] who
showed that it is enough to assume that {8.1) is satised in a subinterval
{a. b) of 1—1, 1]. Of course, the convergence can be assured only in this
interval. The proof is much more difficult. Hence we pose

ProBiEM XVI1. Find a large class of weight functions p(x) for which {19.5}
implies

i

H.(f; P) = f(x), (:5.9;

uniformly in [—1 -~ €, 1 — €, for every fe Cl—1, 1]. Is (15.8) sufficient for
{19.9)1
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ProsrLEM XVII. Is condition (19.8) sufficient to assure

lim {1 (f — Ho(f, P)2dx =07 (19.10)

n->x J_.

20. One could expect that if, for some matrix A4, the corresponding
Hermite-Fejér step parabolas HX(f, 4) (see (19.2), (19.3), (19.5)) satisfy

Hi(f, 4) — f(x) (20.1)

in [—1 -+ ¢ 1 — €], for every fe C[—1, 1], then the nodes of A must be
“very regularly” distributed in [—1, 1]. T have alluded to such a theorem in
§18. An older theorem of a similar character was obtained in the investi-
gation of the following question. Let / be a given closed Jordan curve in the
complex plane, and let the elements of 4 belong to /. Suppose that fis a
regular function in the closed interior of . What is a condition on 4 which
ensures that

L(f, 4) = f(2) (20.2)

uniformly, in every closed subdomain of the interior? Fejér [19] and Kalmar
[33] showed that necessary and sufficient conditions are the following: Let

w = 0(z) (20.3)

map the outside of / one-to-one and conformally onto | wi > 1 (@ is contin-
uous on the closed exterior of /). To the elements in the nth row of A4 there
correspond points on ! w ' = 1. The theorems of Fejér and Kalmdr asserts
that a necessary and sufficient condition for (20.2) is that these n points
be uniformly distributed on w{=1 (in Weyl’s sense). We say that
Win s Wan seees Wayp are uniformly distributed on !'w| = 1 in Weyl’s sense, if the
number of w,, which are on a given arc of the circle | w' = 1 divided by
n tends to 1727 of its length, as n — oc.
In particular, if / is the interval [—1, 1], then

0-1(w) = % (W + '1—) . (204)

W
Let the elements of 4 be denoted by x,,, , and let the image pointson | w = = 1
be
e=ttm (0 < 0,, <), (20.5)
that is, let
X =cC0s 0, . (20.6)
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Then the points 8,, have to be uniformly distributed inx [0, =], This can be
interpreted geometrically as follows: Let the poinis x,, be projected on the
semicircle over [—1, 1]. These projections have to be uniformly distributed
on the semicircle in order that (20.2) be true for every f{x) analytic
in {—1, —1].

Now we consider the following question. For a given § < o < 1, what is
a necessary condition on the nth row of 4 in order that

L(f; 4) —> f(x) (20.7)

on {—1, {} for every

L

feLlipJ—1, +1]. {20.8}

It follows from (15.4) and (15.1) that for ¢ > 0 the inequalities

n

Z [un(X; A)i < C(E) 72211 1—y) e
r=1

and

IngE]

s )} < om0

v=1

must hold. This implies that, with some constants ¢, v = v(a}, we have

N

e d) <ew, v=1,2.,n n=12.. (20

J

Hence, according to a theorem in my paper with Erdos {11, Theorem XV},
we have

| a—b | . .
by 1———n | < o, €) ntiFte; (20.10)
U agt,,<b ™ !

that is, (20.7) and (20.8) imply that the 6,, are uniformly distributed in inter-
vals of length n2-1/2,

In view of the next problem, Theorem X1V of our above-mentioned paper
is even more surprising. According to this theorem, from

"a(x, A)f < T = Const, ve=1,2,..,n #n=1L2., 201D
it follows that

Y 1=l ] < T, ot — by nypiese (20.12)
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This means that the elements of a row in 4 are uniformly distributed in
intervals of length Q2(rn)/n where ((n) is a function tending to oo arbitrarily
slowly.

If, for the Hermite—Fejér interpolation polynomials H}(f; A), we have
(20.1) uniformly in [—1, 41}, then it is obviously necessary that

max max | A, (x; A < T, n=1,2,.. (20.13)

I<v<in —I<2<1
Now we ask
ProBLEM XVIIL. What kind of uniform distribution does the restriction
(20.13) imply for the 0,,, defined by (20.6)?
Certainly it is at least as strong as (20.12).

21. After the discussion of §15, we can at once state

113

ProeLEM XIX. Do the Hermite—Fejér “step parabolas” have a “fine”

convergence theory?

It is worthwhile to state a second part of this problem as a separate one.

PrOBLEM XX. Stuppose that A is a matrix satisfying

i | hu(x, A) < CrP(0 < B < 1), (21.1)

where C is independent of n. What is the greatest lower bound of the set of «’s
for which (20.1) holds for all f (x) satisfying

f(x) € Lip,[—1, -1]?
Section 16 makes the following problem interesting.

PrOBLEM XXI. Let H*(f, L™) be the nth Hermite—Fejér interpolation
polynomial of f (x) based on the Laguerre matrix L*. Is it true that

lim [ () — Hy(f, L) o' di = 0

Jfor every continuous f satisfying (16.5)? Theorem 14.7 of Szegd’s monograph
[536] “Orthogonal Polynomials” suggests that the answer to this question is
affirmative.

22. 'The results of Fejér and Szegd on convergence of the Hermite-
Fejér stepparabolas convey the impression that the convergence behavior
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of Hermite-Fejér interpolation is always better thar that of Lagrange
interpolation. Our next problem is in this direction.

ProBiEM XXII. Let O < x < 1 be given. Find a matrix A* such thai,
Sor all feLip.(—1, 1), we have

L(f, A®) — f, 22.1
uniformly in [—1, —1], whereas for some f* we have

Im max H*(f* 4%) = .

n-x —l<<e<i

If such a matrix exists. it would mean that Lagrange interpolation may
be “good™ for a large class of functions for which Hermite-Fejér inte:-
polation is not a good means of approximation. On the other hand. can it
happen that the step parabolas belonging to a given matrix A are “much
vorse” than the Lagrange parabolas belonging to the same A7 Thus we
are led, for instance, to the following

ProBLEM XXIII. Let O < x < | be given. Szipz)ose that A= is suck that
LS A%y — funiformly in [—1, 1] for every fe Lip l—1, 1]. Is it true that
there e x'sts an integer r such thatr if g is r-times comnuous!y differentiabic

19

in{—1,1% A hen H:( g, A®) — g uniformly in [—1 — — €}7

An affirmative "answer to this question scems to be the case because of the
fact that from our assumption follows, as in §20, that

n
Yo Lax, AR < o), -l <x <l (2.2
y=1

23. The first theorem drawing a general conclusion from the bcho vi
of the polynomials H*(f, A) on those of L(f, A*) was found by

calls a matrix 4 “strongly normal” if, for ali w and forv = 1, 2,...,
wi(x,., . ; .
1 — "E")( — X, n) =p >0, —1 <y <l (23.1)
w
v, T

1

where p is independent of v and #. He proved that in this case,

L f, 4) — f,

uniformly in [—1, —1], if fe Lip,[—1, +1], = > 4. In his posthumous paper
[31], Grinwald showed that, for such a matrix A4,

HA(f, &) —~ /.
uniformly in [—1, =1], for all fe C[—1, —11.

e
N
w
™2

N
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It is likely that (23.2) alone can assure that L,(f, 4) cannot behave “too
badly.” Such a conjecture can be formulated as

ProBLEM XXIV. Is it true that, for any matrix A* satisfying (23.2), we
have L,(f, A*) — f for all functions f which are continuously differentiable
in[—1,1]?

24. It is natural to ask about the “real reason™ for theorem (19.4)-(19.5)
of Fejér. Thinking geometrically one could imagine that by letting the deriv-
ative be zero, we prevent the interpolation polynomials from “jumping”.
If it were so, then by rot prescribing a value of the derivative at a single point
of A, we would not change the situation too much. Of course, the degree
of the interpolation polynomial

HX*(f, T) (24.1)

would then be <2n — 2. Call the point x,¢,), = X, for which the value
of the derivative is not prescribed, the exceptional point. At the end of the
thirties I raised the question to my friend E. Feldheim, How do the inter-
polation polynomials behave in [—1, -+1] if limy e X,y — & £ being an
interior point of [—1, 1]? Feldheim found that the polynomials converge
uniformly in the two intervals we get by removing an arbitrary small neighbor-
hood of ¢ from [—1, +1].

In my paper [60] dedicated to the memory of Fejér, I described a peculiar
situation concerning the critical point. The polynomials H}*(f,, T) are
uniformly bounded in [—1, -+1], but for some fi(x)e C[—1, +1] and

& = cos(w/5) they do not converge.

" One can ask

ProBLEM XXV. Can one distribute the exceptional points in [—1, +-1]
so that, with some f1(x) € C[—1, +11, the polynomials (24.1) would be uniformly
bounded in [—1, 1] and would diverge everywhere?

Since problems concerning further peculiarities of H**(f, T) have been
solved by Vértesi [63] and by Meir ef al. [38], I end my discussion here.

25. 1 return to the theorem of Gauss already mentioned in §1 which
states that if 4 = P* is the matrix of the zeros xJ, of the Legendre poly-
nomials (or using the notations of (5.6), if P* = P(0, 0)), then the relation

T

[ o) dx = Y, ) [ Ll Pydx 5.1
1 -1

e v=1

is true not only for polynomials #(x) of degree <<n — 1 but even for poly-
nomials of degree <(2n — 1. As a further preparation to our next subject I
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mention Hermite interpolation, according to which, if #;, ..., #,, are arbitrary
natural numbers, then for the points (4.1) there is exactly one polynomial
G(x) of degree not exceeding

. def -~
My — My — 0 — i, — 1 =N, (25.2;
for which
" . . . . N P
GYUx,) = aGun; (j=0,1,.,m — Lv==1_ 1 {25.3}

My = My == ' = M, =

e,
NG
L
PR

o

(this is the case of main interest to us), then G(x) can be written as
n
G(X\} = Z G(xwl) ly'n()(x; A)

G} L ax: 4). {25.5}

o Z G'(x,0) L (x; A) — -+ =
r=1

ek

«
I
Pt

x

where /,,.(x; A) are the fundamental functions of Hermite interpclation.
Hence, the formula

sl
[ Lol ) i — -
Y1

[ " 6 dx = Z G(x,)
' v=1

PUSE )
1

n

+ Y, 6, [

y=1 V-1

N
Na
Lh
(&5

W2

is exact if G(x) is a polynomial of degree at most mn — |
are arbitrarv. The numbers

1

. def . ~ 5 \
| Lalx, Ay dx = A, (=0 m—Yl;r=1,.,8,0=1.2,.,}

o

will be called Cotes numbers of higher order.

26. Because of the theorem of Gauss it is natural to ask whether knots
(4.1) can be chosen so that the quadrature formula (25.6) wili be exact for
polynomiais of degree not excceding (m — yn — 1. In my paper [59]
which appeared in 1950, I showed that the answer is negative for m =
positive, and it is for m = 3. Furthermore, I proved that the uniquely

[ SR



46 P. TURAN

determined matrix 4 consists of the zeros of the polynomial #(x) which
minimizes the integral

( " () dix, (26.1)

where
T(x) = x" + ---. (26.2)

More generally, the answer is negative for even, and positive for odd m.
The unique matrix 4, for odd m, is given by the zeros of the polynomials
minimizing

Al

| ()" dx. (26.3)
1

Tt is known and also directly provable that these zeros are all simple and
contained in the interval (—1, +1). Gauss’s theorem follows, for m = 1,
by a known extremum property of the Legendre polynomials.

Little is known about the extremal polynomials of (26.3) for m = 3. |
shall return to this question. Instead of (25.6), it is also interesting to investi-
gate the analogous formula

[ 6 pwdx = 3. 6 [ s Dp) i+ . @64

v

with a weight function p(x) as in §5. Then the role of the integral (26.3)
is taken over by

[ 11 o)™ p(x) dx. (26.5)

Particularly interesting is the case
px) = (1 — )P, (26.6)

By a theorem of S. Bernstein, in this case, the nth Chebyshev polynomial
is the minimizing polynomial for odd values of m. The formula

1 G'(x) o LY . v — 1_ rl lvno(x; T) .
f_l T = Z& G (cos 5= u) J_l 0 — x2yr dx -+ (26.7)

is exact for polynomials G(x) of degree not exceeding (2 — 1) n — 1. Since,
as I remember, formula (26.7) is used in methods of Runge-Kutta type, the
following problem seems to be interesting.
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PROBLEM XXVI. Give an explicit formula for
!ﬁl Vn]( ty 2 )
g (1 — X2
and determine its asymptotic behavior as n — <.

27. Before proving his convergence theorem, in
investigated the step parabelas in the classical case 1G! i
zeros of Legendre polynomials. He found that the convergence is uniform

dx

in[—! —¢1—¢],and at x = =1 and x = —1 the step parapolas i
Y, t

10 § J_1 f{x) dx. In my joint paper [7] with Egervd 'v, ve observed that i

step p ara "las are replaced by the polynomials of degree <{Zn — 1 ¢
aiues cf the function and ot its derivative at the Legendre

of the function at x = —I, then the convergence becomes unify
s hecrem was generalized bv Szdsz [53] in 1959 an d by Berman [€
73. For arbitrary Jacobi matrices F’(_L, 3), the questicn is n

For generai weight fuactions, nothing is known. Therefore v
owing two questions.

<
mm S\J

ProeLEM XXVIL. Find a class of weight functions p{x) such
matrix P arising from p(x), and for the polyncmiais £y, ([, P

n+ilJ

7 Lnpe 4
that, jor fne

-
og

3

[

S

3
S

E’W 1('/’ f) f(*‘w?)’
dx
Eyppirlfy P)ipesy = f(=1}

(=),

¥R

the limit reiation

holds uniformily in [—1, ~1].

ProerLEM XXViil. Give a general class of matrices wh that, ;
feCl—1, +1L.

Hm | (f — Eppydd /2 PV ple) dx = 0.

=L g

III. BIRKHOFF OR LACUNARY INTERPOLATION

28 The basic probiem of Hermite ;nternnlat' s the deerminatio
the polynomial #(x) of minimal degree for which

7 x;) can be prescribed (kK = 0, 1,..,m; — 1,7 = 1, 2., m). {281
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That is, the consecutive derivatives are prescribed. G.D. Birkhoff, in 1906,
was the first to consider the general case, where we drop the requirement
of being consecutive. While polynomials of the previous kind always exist,
in Birkhoff’s case, polynomials satisfying his conditions do not necessarily
exist. Hence, we have the basic questions:

(a) existence,

{(b) uniqueness,

(c) possibly, explicit representation, (28.2)
(d) convergence,

(e) applications.

Birkhoff assumed (a) and (b) and was mostly interested in (e), for instance
in studying the error term in mechanical quadrature. In the middle of the
1930’s, I had a conversation with Fejér on interpolation. I mentioned to him
that it would be interesting to investigate, for the matrix T, the sequence of
polynomials of degrees not exceeding 2n — 1, for which the values of the
function and those of the second derivative are given at the knots. (One
calls this (0, 2) interpolation.) The only work in this direction he knew was
a paper of Pélya of 1931. He did not know of Birkhoff’s work. Having looked
at Birkhoff’s paper, I realized that he did not consider questions of con-
vergence. 1 postponed study of this question to complete my current inves-
tigations. Then events of world history intervened so that I was able to carry
out this study only in 1953. Since we did not have any matrix for which
existence and uniqueness of (0, 2) interpolation polynomials were known,
I analyzed with Surdnyi [47] the case where the knots are the zeros of the

ultraspheric polynomials P{**)(x), including the case « = —1. It turned out
that there can be uniqueness only for
n = 2k, (28.3)

but even in this case, it is not always guaranteed.
This motivates the following

ProeLeM XXIX. Find all Jacobi matrices P(c, B), o = B, for which the
(0, 2) interpolation problem does have a unique solution.

(29. Ifin the nth row of a matrix 4 there are n interpolation points, then
A is called ““very good” if, for arbitrary sets of numbers y,, and y,, , there
is a uniquely determined polynomial D, (f; A) = D,(f) of degree at most
2n — 1 for which

Dn(f: A)x=wpn = Yon = f(Xun) (29.1)
(FDAEAY
dx? e

f B=Lyp
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In that case, D,(f; A) can be uniquely written as

n 7
Do(fy A) = Y, f (o) 1onlXs AY — 3 inponks A), (29.23
v==1 ot
where
flXim) =1 ifj =3,
=0 otherwiss; (29.3;
X)) =0 (=1 2,...1)
and

Pon(Xie) =0 (G =1,2.....m):
X5 =1  ifv =], {29.4)

=0 otherwise.

The polynomials r, ,(x) and p, ,(x) are called the fundamental functions of
the first and second kind of the interpolation procedure.

30. 1t turns out that not the T-matrix but rather the w-matrix is the
“handiest” for the problem, even when the restriction (28.3) is needed. The
kth row of this matrix = is given by the zeros of the polynomial

AT
ToX) = | Py {8} dt 30.0)
Jo1
Pui_s(#) being the (2k — 1)-th Legendre polynomial; in particular x; . =

—1
i.

Xok.2k =

I published the first theorem on convergence with Baldzs in 1938 [2:
I shalil not go into details on this subject. I want only to mention that there
is some freedom in choosing the y,, . Namely, we need only the restriction

Yy = 0(n) as 11— 0. (30.2}

This restriction cannot be weakened.

31. Before proceeding, I would like to make some general remarks on
the theory of lacunary interpolation.

In his report “Birkhoff Interpolation Problem™ (Center for Numerica:
Analysis, The University of Texas at Austin, 1975), G.G. Lorentz very nicely
summarizes and complements the litarature on the problem. He is mostly
interested in questions of regulairty, namely, characterizing those natural
numbers

o~
Lad
ot
e,

0 < klj < kzj < o << kli:{ (_;’ == E, 2,...3. 71\)
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(n given) for which, with arbitrary choice of the knots
(24 >&6E>>& (D (31.2)

the polynomial w(x) of degree at most /; - L, + -~ + [, — | is uniquely
determined by the relations

I E) =y, v=12.,0L:j=12..n, (31.3)

for each choice of the y;, .

This problem is important even if n does not tend to oc. In fact, the question
is interesting even for n = 2, a case solved by Pdlya. As stated on p. 79 of
Lorentz’s report, the complete solution of this nice question (originating
with Schoenberg) is hopeless. Lorentz also mentions that Birkhoff was not
interested in problems of regularity, even though his results contained some
sufficient conditions for that. When mentioning the theory of convergence,
Lorentz refers to my work with Baldzs [2] as the first results. About these
and many other related results concerning similar matrices, he says that
they all depend upon a very special selection of knots, for which explicit
formulas are possible. It is worthwhile to reproduce here the reason for our
selection of knots, indicated also in [2].

We look for the global solution of the classical differential equation

V') — p(x) y(x) =0 (1.4
on the positive real line. Let
0 <Mn <72n < < Nn> (31.5)

and let 4; be the matrix belonging to these values. Then, with y,,’s to be
determined later, and with »,, = ¢(x,,) ¥, , the polynomial
Dn(ya Al) - Z yv'n[rvn(x; Al) + (P(Xvn) Pvn(x; Al)]

r=1

satisfies Eq. (31.4) at 7,,, for any choice of the 3,,’s. Put

D) — ¢() Do) =Y o goalcs A1), (3L.6)

p=1

Let the initial conditions be, for instance,

y©@ =1, () =0. 3L.7)
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Then there are two linear relations between the y,,’s. Subject to these relations
we have to minimize the quadratic form

e
| (D — ¢D)? h(x) dx. (31.8)
it can be expected that, for n — ¢, the inierpolation polynomials &,
converge to the solution of (31.4) with the initi 1 conditions (31 7}, {There
are many ways of modification and the initial conditions (31.7) can be
repiaced by other conditions.) If we want to be able to handle (3.18), we
need contrel over the integrals
[ 835 4) gon(x; 42 ) dx. (31.%)

“0

We can expect to have this conirol if we can calculate the functions g,.(x; 44
01 the fundamental functions r, ,(x; A1) and p,,(x; A;}. Therefore, the phrase
“very special knots” refers to looking for an explicit basic matrix for which
the fundamental funciions have a simple form. Such investigations can give
valuable information even if they do not give a final answer.

We shall make a further remark in §38,

32. if we take as knots the zeros of 7y, _,(x) (see (30.1}), then we have a
rather unusual case in the theory of converg nee of interpolatien processes.
For odd n, there are infinitely many polynomials with the ﬂqmrec properties.
So we have

PROBLEM XXX. [nvestigate the general theory of lacunary (Birkhoffs
interpolation processes for f< C[—1, —1].

With his theorems (19.4)—(19.6), Feiér settied the problem of convergence
in the “simply infinite” process, where there are beunds only on ' 3/

Yon

33 In §28 we defined ““very good™ matrices. We say now tha: a matrix

» 11, forv =1,2,...,n and n = 1, Z,..., there exists af ias
wa(X; Ay with the properiies (29.3) and

The quest,cn of the “most xable {0, D-interpoiztion is the following

ProBLEM XXXI.  Which “good” matrix 4 will minimize

k4
e v AV
_1<£}x< Z Fua X, A,!i.

v=1

Py
()
i
ot

Nt

Let 7, denote the mairix defined by (30.1). T showed with Baldzs {21 that

~
S
=
3
ot
~
N
o
3
N
L
¥}
2
-
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where ¢, is a numerical constant. This cannot be improved since

n

_jnax . V;l | Fon(x5 )| = o (33.3)

4

I believe that for any “good” matrix A4,

max 3 | ru(x; A > ean. (33.4)

—l<o<

If this is true, then the matrix m(x) is not “far from the optimal 4. (A
bibliography on Hermite-Birkhoff interpolation was compiled at the end of
1975 by P. L. J. van Rooij, F. Schurer, and van Walt von Praag.)

34. Fejér’s theorem mentioned in §19 gives a great freedom in choosing
the points y,, without “spoiling” the convergence. That (19.6) is sufficient
follows immediately from Fejér’s theorem stating that

n

max y | ga(x: D =1 -+ o)) 7,-2—11 log n. (34.1)

—l<e<—1 ]

The question which naturally arises is whether this freedom in choosing
y., is the best possible in Fejér’s result, that is, whether or not we can allow
more than (19.6) for y,, . This question, that is, the problem of the “freest”
(0, 1)-interpolation, is equivalent o finding a matrix 4 minimizing

—I<e<l

max Y | g.(x; 4), . (34.2)
v=1

We answered this question, at least asymptotically, in a paper with Erdés

mentioned in §7. We showed that, for any A4,

n

max I g(x; A)j > —7—7271' (log n — c logiog n), (34.3)
1

—1<m<l &

that is, T gives asymptotically the best result for the “freest” (0, 1) approxi-
mation. The corresponding question for (0, 2) interpolation is the following

ProBLEM XXXII. Which is the “good” matrix A, minimizing

max Y | puCr, )2

—l<es+l
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Rahman, Schmeisser, and myself [42] showed that, with some constant

n
I's
- Tl . i = 244
_ax Z | pon(x; AL > P (34.4)
=1

for every “good” matrix A.
For the matrix = defined in §30,

w

6‘1 . 32
2< m | poafX; ) < =2,
P = _1<a§1é_:_1 Z I Pun(‘c, Tk < n

Py
[’
+a
)

v=1

The piausible and apparently difficult conjecture is that, for any “gooc”
matrix,

S | pol; A) > 2 (

p=1 i

Lad
B
(W3
o

max
—i=<z<]

9
1

~

which, essentially, cannot be improved.

35. Let 4 be “very good” in the sense of §28. Then we have, for every
polyncmial of degree at most 2n — 1,

w1 id pi . -
{ 'n'zn—l(x) dx = Z W?n—l(xun) 3 roa{x; A) dx
Jq R

y=1 =

N
j o)
Lo
o

0,,(x; A) dx.

1
a1l
3

n
_iL Z "T‘g’n—l(xer é

v=1 v—1

The question arises whether we can choose 4 so that (35.1) remains valid
for polynomials of higher degree. This can be formulated as

ProBLEM XXXIL.  Determine the matrices A, if any, for which {35.1;
holds for all polynomials of degree <2n.

36. As we have seen in §15, Lagrange interpolation has both a ““coarse™
theory and a ““fine” one of convergence and divergence. For the Hermite-
Fejér interpolation polynomials H}( f; A), if we assume (21.1) and

lim

nom phe

max Y | h(x, 4)] >0, (36.1)
y=1

then we can see that the procedure is “bad” for the class Lip,[—1,
for all x satisfying

B

B+2 ’
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Thus, these classes fall into the “coarse” theory. A slight generalization of
Problem XX makes it plausible that the classes (36.2) give the entire “coarse™
theory of Hermite-Fejér interpolation. The analogous questions for (0, 2)
interpolation seem to be more complicated because of (33.4). That inequality
suggests an affirmative answer to the following

PrOBLEM XXXIV. Is it true that, for every given “very good™ matrix A,
and for every 8 > 0, there exists an

Jo(x) € Lipy_s[—1, +1] (36.3)
for which
m _max 3 i/fo(X,.n) ralx; 4)] = 0? (36.4)

Even if conjecture (33.4) is true, (36.4) can be proved only for 2 < § < 1
if we follow the proof of (15.4).

37. If there is an affirmative answer to the previous question, then in the
convergence theory of (0, 2)-interpolation, the role of the classes (15.3)
is taken by functions f(x) which are continuously differentiable in [—1, +1],
and for which

f'(x) e Lip,[—1, ~1]. (37.1)
Here is a problem corresponding to Problem XX.

ProBrLEM XXXV. Suppose that for a “‘very good” matrix A we have

,,l
max Y | ix; A) < ne. (37.2)
=1

—I<e<+1
ye=

Find the viaues of « for which f' € Lip,[—1, 1] implies

DI A) Y S0 ol 4) — £, (37.3)

uniformiy in [—1, —1].

It is likely that, except for the last remark in §33, (0, 2)-interpolation does
not have a “coarse” convergence theory.

38. As mentioned in §28, in his paper, Birkhofl obtained for arbitrary
“very good” mairices a general formula for the error term in mechanical
quadrature. Without mentioning here some disadvantages of his remainder
term, we merely note that it involves the 2nth derivative of the function.
On the other hand, my theorem with Baldzs gives, in the case of the special
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class of functios

,.-rrarrix, convergence of the quadrature for functions f(x) which
differentaible and whose derivative belongs to a Lipschitz class wi h
small exponent. Cennected with this is the following
Jor which the

ProBLEs XXXVI. What is the “best
integrais of the polynomials
(n even)

Z f(xvn) i‘.,n(x, 7T) (

; 3
tend to j_y f{x)dx?
39. The previous discussion could be completed in the negative direction

by an affirmative answer to the following
ProBLEM XXXVIL. Does there exist, for every “good” matrix A, «
Sunction fix) € C[—1, —1] such that, with the noration {(37.%)
y_qgllj DI dydx | = 20 (35.13
rhaps even the existence of such an fy(x: 4) = Lip.[— 1. —1] can be estab-
lished.
A classical theorem of Steklov [46] and Fejér [217 guarantees that, if a
matrix A satisfies
[ Lalx: 4)dx =0, 352
then
] ol ) 1 )
lim | L(f,A)dx =1{ f{x)dx {38.3)
n J d
for every Riemann—integrable /. By analogy, one could expect that it is advan-
tageous to study mechanical quadrature for (0, 2) interpolation with matrices
A satisfying
0, v=1,2...,5,1>n,. (39.43

1
f ralx; A) dx >

(39.4)7

1 e ad

1€

Qur next problem is related to this
Does there exist a matrix A satisfying

ProBLEM XXXVIIL
the case of a ““very good” mairix A, an affirmative answer to Prob

bt

1
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XXXVII would give a negative answer to Problem XXXVIII. Namely, for
such a matrix 4,

”

3 Ealx; A) = 1.

v=1

Thus, if | f| < 1, then

EJ—ll Di(fs 4) a’xl <X ”_11 Finl(x; A) dx? - i [1 FonlX; A) dx = 2.

v=1 p=] *—1

which contradicts (39.1).
“Good” matrices with the extremal property of the following problem
certainly play an exceptional role.

PROBLEM XXXIX. Determine the ““good” matrices for which

n
p=1

-1

f roax: A) dx
-1

is minimal.

An affirmative answer to the following question would be very useful.

ProBrEM XL. Is it true that, for “good’ matrices A,

Max_y<e<ea Z ¥ sz(-x; A)! c 9 (395)

Max_jcpcn 2 ' FalX; A)] ne

If it is, then because of the w-matrix, it cannot be essentially improved.
A somewhat stronger conjecture is given in

ProBLEM XLI. Is it true that, for every good matrix A,

max Ao Plts DI ¢,
=12, MAX_3<e<n | Fon(X5 A))

n’

IV. INTERPOLATION ON CURVES

40. So far we dealt with interpolation on the interval [—1, +1]. Now
we study interpolation on a Jordan curve or arc / lying in the complex plane.
The theorems of Fejér and Kalmédr mentioned in §20 gives a necessary and
sufficient condition for the relation

lim Lo(f; 4) = f(2)

to hold, for f analytic on /.
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What happens if we assume only continuity of £, and if / is “not very
smooth,” is a different question. (The problem when / is a broken line con-
sisting of two segments was mentioned to me by D. . Newman.) if

w o= ¢{2) {4013
is the analytic function mapping one-to-one the ouiside of Jonto "w > 1,
then it is natural to choose the knots z,, so that
2v — V)i oA , .
Gr{:un) = €Xp (———2‘7& . v=1.2,...,mmn=12,.. (40
The real difficulties and deviations from the case of the interval [—1, —i]
will be more clearly understood if we take for / the curve
def
L, = K{VK,, {(40.3%
where
Ki:z—4%41 =% Im: <0
(40.4;
Ky: z+ 41 =1 Imz >0
It can easily be verified that, in this case,
T
(F(Z) = tan i
Thus, the knots are given by
T Qv — 1)mi e &
tan =exXp ——— v=12....mun=12.. (5
4z,, P 2n ’ o ’ v

i think that the matrix defined in this way corresponds to 7. A theorerm
corresponding to (4.6) and (7.1)(7.2) would follow by the solution of the
following

ProOBLEM XLII. If the elements of A are on Iy defined 5y (40.3)-(40.4),
then the minimum of
n
max Y ia(z; A {46.6)
=l 1
with respect to A is asymptoticallv taken for the matrix defined by {4
What is its value?

Of real interest are problems corresponding to specific choices of the curve /.
More specifically, we would like to know how the singularities of / influnence
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the approximation by polynomials on this curve. This line of thought
raises also the question what is the “correct” definition of modulus of con-
tinuity. Should we define it (for rectifiable /) by

w8, f) = max | f(x) — f(X)i, 40.7)
where x” and x” are on / and their distance measured on [ is <3, or by

w8, f) = max |f() — S (40.8°

w—w <

It is likely that (8, f) is the correct one. If so, how about non-rectifiable
curves /? Hence,

ProBLEM XLIIL. What modulus of continuity should be used in the analogs
of the theorems of Jackson, S. Bernstein and Miintz-Szdsz for curves | with
singularities?

For recent developments, compare Freud and Vértesi [26] and Kis and
Vériesi [35] and the abstract of E. D. Lesley in the November, 1975 issue
of the Notices of the American Mathematical Society.)

It is very likely that if / is continuously differentiable or satisfies some even
stronger conditions, then the whole classical theory of approximaiion can
be extended to it. Furthermore, it is very probable that such questions have
already appeared in the literature. Therefore, I do not formulate them as
open problems.

41. The case where / is closed, especially when / is the unit circle, has
been the subject of many investigations. Here the role of the class C[—1, —1]
is played by C[| z| < 1] whose elements f(z) are regular in |z << 1 and
continuous in | z| < 1. The elements of the matrix 4 are on |z | = 1.
Although it is clear that Lagrange interpolation is not good in general, it
is still possible that the question corresponding to Problem I has an elegant
solution.

ProBLEM XLIV (A conjecture of Erdos). Is it frue that if the elements
of A are on the unir circle, then

min max Z L) 41.1)

v=1

is attained if the knots are the vertices of a regular n-gon? (We denote such
a matrix by Ay .).
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In the case of [—1, —1], switching from Lagrange internolation to Hermite
interpolation has helped to achieve convergence. in the case of the unit circle,
this does not help. According to a remark of Kévdri, none of the processes
used so far is always convergent. Thus we have the following

Prosiem XLV (Kovari). Does there exist an interpolation proce 3
which converges for every fe C[jz < 1], uniformiy in 2z < 17 (4 resu
in this direction can be found in Szabados [52].)

One could think that the case ;z < 1 is always “worse” than that of
[—1, +1]. However, this is not always so. For instance, in contrast to con-
jecture (33.4) which is supported to some extent by {33.2) and (32 3), O. Kis

cno‘»ed that, for the fundamental functicns of the first kind #,,(z; 4,) of
0, 2)-interpolation,
n
max » | r,.(z; 4g): <clogn {41.2}

which Is essentially better than (33.3). It is probably simple to give a lower
estimate for the left-hand side of (41.2).

Although it does not look difficult, it seems worthwhile to investigate th
following

Prosiem XLVI. Is if true that, for all fe Cl' z| < 1],
tim [ 1@ = %A e Aoz =02

z v=1

42. A different and interesting question (in its simplest form) is ff:;
the function e” can be approximated by polynomials on the entire real ax
Our next problem concerns this question.

Prosiem XLVIL.  What is the smallest a = a(n) such that

max |e® —m,(x} =1
—a(ny<z<a(n) X} =

for every polynomial m,(x) of degree <n?

Denote by ¢, the positive root of the equation

exp(l — x)2 = 1A 4 2

640/29'1-3
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(0.66 << ¢y << 0.67). Révész [43] showed that, for n = ny(e), the value of
a(n) is between

Cot — 0ot and coh - (—;9 + e) log n.

Y. ORTHOGONAL POLYNOMIALS

43. In §5 I have mentioned orthogonal polynomials and their essential
role in the theory of interpolation. In the general theory of approximation
by polynomials, their significance can be illustrated by the fact that if p(x)
is a given weight function, and

[ 726 o) i

exists, then the minimum of fj [ f(x) — m,(x)2 p(x) dx is taken on by the
polynomial =,(x) which is the nth partial sum of the expansion of f in the
orthogonal polynomials go(x), g1(x),.... corresponding to the weight function
p(x). S. Bernstein (globally) and G. Szegd (locally) gave asymptotic represen-
tations for ¢,(x) under certain assumptions on p(x). For many purposes these
beautiful formulas are “too strong,” and weaker conclusions would be
sufficient. On the other hand, we would need such a weaker conclusion under
essential relaxation of the conditions on p(x). In this connection I mention
a 50-year-old conjecture by Steklov.

ProBLEM XLVIII (Steklov). Let p(x) satisfy (12.6). Is it true that, for the
polynomials q,(x), orthonormalized on [—1, +1] with weight p(x), we have
in [—1 4+ ¢, 1 — €] the inequality

| 4.(0)| < ¢(p; o), (43.1)

independently of n?
Related to this is the following

ProBLEM XLIX. Is it true that, if

p(x) = (1 — X7 (43.2)
then
l Q'n(x)l < C([J), n = 15 2:---5 (433)

uniformly in [—1, +1]?
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There is great interest in this problem, due io the following fact. As
mentioned in §8, Freud proved (8.4) for certain matrices £ uque an ass ump—
tion on p(x) which cannot be easily checked. This assumption i 3 ust (43.3).

Hence an affirmative answer to the last problem would also vield (8.4}
under the condition (43.2).

44. The asymptotic formulas of Szegd and Bernstein are of the forre

2, 1By — d(6)
oo 0 = (o) Gh g (40

Here 6§, is a fixed number satisfying e << 6, <7 — e. |
The function ¢(0) is determined by p(x). Formula (44.1) holds if, putting
. def ) \
p(cos B) sin 6 = p,(9), (44.2

one has the relation

210 = B) — pu(6); < clog™—* ——

Condition (44.3) is sufficient for (44.1). As far as I know, the question of
whether or not it can be replaced by a weaker one is stilf open.

-

ProBLEM L.  Does there exist a weight function p(x) for which
p(x)(l - xZ)l/’2 € C["‘—i- MI]*

(44.4)
PO — X2 = i > 0, )

and for which, with some 6, (0 < 0, < w), the orthogonc! polynomiafs g,
do rot obey any asymptotic formula of type (44.1)7

To illustrate the difficulty of the problem, I mention that, in my paper with
Erdds mentioned in §20, we showed that, if (44.3) holds, then. using the
notation (20.6), we have, for

€ < 0,, < av—Z-l,n STk
the relation

}n'l_)nxl ”(Hv-é-l,ﬂ - 9»*2) = 1.

45. In 1938 Erdos and I [10] showed that, if the integrals

S)\

s
e

Er p( x) dx and
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exist, then writing the zeros of the orthgonal polynomials as cos §, ,, , we have

0 < s — O < e(p) 2L (45.2)

It is natural to ask

ProBLEM LI. Can the upper estimate (45.2) be improved?

In our paper, we obtained (45.2) as a corollary of a more general theorem
which as we showed by a counter-example, cannot be improved. However,
we do not have such a counter-example for zeros of orthogonal polynomials.

46. Consider now the orthogonal polynomials g,(x) belonging to the
weight function p(x). We assume they are normalized as

Gax) = X" + -~ (46.1)
It is known that the recursion formula

__ Xqn(X) = qn11(X) + Bugu(x) + Cufna(X) (46.2)
holds, where
C, > 0. (46.3)

It was an important discovery by Favard, that, conversely, any sequence of
polynomials satisfying (46.2)—(46.3) is orthogonal with respect to some weight
do(x). About this weight function very little is known. I know only of some
results of Chihara who drew conclusions from the behavior of the coefficients
B, and C, on the behavior of «(x). Many years ago 1 suggested as a problem
for the Schweitzer competition, proof of the formula

lim (2)" K, (52) = e, (46.4)

n>* \ 1

where K,(¢) is the nth Hermite polynomial defined in (5.6) with the normali-
zation

fr K1) e~jdt = ()12 27 | (46.5)

-

The interest in this formula lies in the fact that the weight function is
reproduced in a simple way by the orthogonal polynomials, for real z’s.
It would be desirable to be able to recover the weight function in such a way
for a broader class of such functions.
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ProereM Lil. Is there a formula for the Jacobi polynomials P8

analogous to {46.4)? Or, is it true that

lim (2} gu (5) = P9 46.6)

00

implies p(x) = e=*"9

47. Formula (46.4) is interesting also in ancther respect. For fixed
0<a < b it gives an asymptotic representation of K, (z) in the annuius
an <z | < bn, namely,

K(2) = (1 + o(1))(2z)" o= 127, {47.1)

56
SO

The asymptotic behavior of the K, (z)’s is treated in great detail by Szegd |
Let us denote their zeros by

Xin > Xan = 0 S Xy (47.2

Then we have, as #n — o0,

X1 = (L — o(1)(2m)*2.

N
s
~d
L

"

We can divide the asymptotic formulas into two large classes.

(a) ‘“Outer” asymptotic formulas, valid off the real axis.

(b) “Inner” asymptotic formulas, valid on the real axis.

Since all the zeros are real, the second class of asymptotics is more intet-
esting. Within this classification of asymptotic formulas, we have further
subclasses. One of them pertains to the domain - = ' <{ R, R independent of
n, another to the constraint

|z < ()3, (47.4)

¢ being a constant. (Note that none of these classes pertains to the domain of
(47.1))

ecause of (47.3), the second type is more interesting because it gives infor-
mation on the osciilatory behavior of the polynomials.

48. The Hermite polynomials have received much attention in the
literature. One of the reasons for this interest is that it was hoped that infor-
mation about these polynomials (and about the Laguerre polynomials)
would lead to a general asymptotic formula for polynomials orthogonal
on an infinite interval. Very little of these hopes has materialized so far.
The first task should be to find the “fine” domains, that is, to soive the
following
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ProBLEM LIII. Suppose that, for the weight function p(x) > 0, p(x)e
L(— w0, ), the moments satisfy

f x[Pp()dx < oo, n=0, 1. (48.1)

What asymptotic representation can be given for

(a) Xin = §(n, p): (b) Xnn = 7)(”9 p)‘) (482)

This problem is interesting even for subclasses of weight functions.

It is easy to see that max, ! x,, | tends to infinity as n — co. In 1960, I
thought that I could construct a p(x) satisfying (48.1) for which x,, > —c,
that is, a p(x) for which,

f(ll, P) — 0, 7](’15 p) > —cC. (483)

From my notes of that time, I am unable to make a valid reconstruction.
Hence 1 propose

ProBLEM LIV. Does there exist a weight function p(x) for which (48.3)
holds?

49. The asymptotic formulas on Hermite polynomials mentioned in
§47 indicate the character of such formulas to be expected for polynomials
¢.(x) corresponding to a p(x) satisfying (48.1). Regarding outer asymptotic
formulas, first for [—1I, 1], I mention here two results. The first one is a
theorem of Szegd, valid for p(x) satisfying

p(x) =0, p(x)eL[—I1,=1], 1og+7€56L[—1,+1]- 49.1)

This theorem (stated for orthonormal polynomials) can be found in
[56, pp. 296-297]. In my paper with Erdés mentioned in §20, we assume only
that

px) =0, px)el[—1, +1] 49.2)
and .
p(x) >0 a.e. (49.3)

However, we do not get an asymptotic formula for ¢,(x). What we do obtain
is

x 4+ (x® — 1)t

gu(x)H% = (1 o(1)) T : (49.4)
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uniformly in any bounded domain in the plane cut along {—1, 1] We
assume there that the highest coefficient in g,(x) is 1. The proper choice of
the branch of the nth root is obvious.

PropLEM LV. Does there exist, for p(x) with non-compact support, =n
asymptotic representation of type (49.4)7

The following is basic.

PrOBLEM LVI.  For which general class of weight functions p(x) satisfying
(48.1) is there an asymptotic formula for q.(x), valid in every bounded closed
domain lying in Tm x > 07

Perhaps it is possible to get such a resuit from the theorem of Szegd
mentioned earlier, by an appropriate passage to the limit.

50. As already mentioned in §47, the really deep questions concern
“inner’” asymptotics. For instance, it would be interesting to determine the
behavior of the orthogonal polynomials in the interval

29(n, p) = x < 2&(n, p). (0.

Here we use the notation (48.2). Since, at present, there are no general
theorems on Problem LML I do not state this question as a numberad
problem.

ProBLEM LVIL.  Find a subclass of weight functions p(x) satisfying (48.1},
Jor swhich the corresponding orthogonal polyromials have an asymptotic repre-
sentation for —a < x < a, with arbitrarily large o

We have somewhat easier questions when we investigaie the distribution
of the zeros in the interval (n(n, p), &(n, p)). The only known result in t
direction 1s due to Erdds [16]. Its statement, in qualiiative form, is that, i
p(x) decreases “‘very rapidly” as x — —oo, thea after transforming the
interval (x,, , X;,) linearly into (—1, 1), the zeros are uniformly distributed
in the sense of §20 on the semicircle over (—1, 1). In the case of Hermite
polynomials this is not true. Thus we are naturaliy led to

ProBLEM LVIIL.  Find a class of weight functions p(x) satisfying (43.1}
which is larger than that of Erdos, and for which e have uniform distribution
of the zeros of q,(x) on the semicircle mentioned above.

51. A seemingly easier question concerns the Cotes numbers

wh
[y

M(,,)‘iif[ L px)dc, v=1,..,mn=12...

Y0
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For the interval [—1, 1], I showed with Erdds in our paper mentioned in
§20 that, if (44.4) holds, then, for all +’s satisfying

log » loga
] - == < < —
1 = X =1 P (51.2)
we have
Anl(P) = (1 + 0(D) "= p(x,)(1 — X2 )2 (51.3)

uniformly in v. This result suggests the following

ProBLEM LIX. Give a subclass of weight functions satisfying (48.1) for
which there is an asymptotic formula of the type (51.3).

The method used in our paper may be a good starting point in solving
this important problem.

52. The problem of asymptotic representation can be treated very well
in the case of weight functions whose orthogonal polynomials satisfy a
differential equation or have a “handy” generating function. The recursive
formula for the Hermite polynomials K,(x) of (5.6) is

K (x) = 2xK,_(x) — 2(n — 1) K,_so(x). (52.1)
Assume that, instead of this relation, we have
7u(x) = (ax — B) gna(x) — (cn® + dn + €) g,_o(x), (52.2)
where g, b, ¢, d and e are numerical constants satisfying
a >0, cx? - dx + e = 0, for x = 2. (52.))

Then, according to Favard’s theorem, ¢,(x) is a sequence of orthogonal
polynomials corresponding to some weight do(x). If we consider x as a para-
meter, the function

F0 = 3 a9 e (52.9)

satisfies a differential equation of the second order in z. This enables us to
investigate the behavior of F(z, x) and ¢,(z) by means of complex function
theory. Because of continuity reasons, one can expect that, with an appro-
priate choice of a, b, ¢, d and e, the weight function must be positive on the
whole real axis. In this way one could increase the class of weight functions
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for which there is an inner asymptotic. The same holds if we replace the
constant b in (52.2) by an appropriate polynomial of second degree in .

ProBLEV LX. [Investigate the inner asymptotics for the orthogonal poly-
nomials belonging to the above generalizations of (52.1).

The study of even more general recursions seems also possible.

53. Szegd and Carleman introduced orthogonal polyncmials in a broader
sense. {See Szegd [56, pp. 364-366].) I shall not consider here the most
general case. Let / be a rectifiable Jordan curve. If p(§) = 0 is defined for
£el, we say that the polynomials ¢ (z) = ¢,{z: ], p) are orthogonal in
Szegd’s sense if the relations

37

tey

=
e
-
A

J, pl&)XEy p(8), de . =0,

~
L
Lol
.

R GG

b2

5

hold, ' /! being the length of /. Carleman replaced the assumption of recti-
fiability by a weaker one. Namely, he replaced the line integral along /
by the double integral over the interior of /. Of course, the weight function is
defined, in that case, in that domain. These polynomials are important because

they are closely connected with the function D(z) which maps the cutside

of / one-to-one onto w ' > 1. Infact,

tim Fr1&) gy

= -
n- Tz

for every z exterior to /. For his polynomials, Szegd developed outer and
inner asymptotics, the latter under rather strong conditions on /. It is a
natural task to weaken them. Results in this direction, which are probably
improvable, can be found in D. Gaier’s monograph “Konstrukiive Method
der konformen Abbildung,” p. 136. T shall not formulate such problems
explicitly. T state here only the following related questions.

ProBLEM LXI. Let [ be a rectifiable Jordan curve. Is there an elegant direct
relation between Szegd’s orthonormal polynomials and Carleman’s, perhaps
with appropriate weight functions?

Propiev LXII.  Is there an inequality connecting the two kinds of poly-
nomials?

ProBLEM LXIIL.  If the domain enclosed by [ varies, how do the orthogoral
polynomials change?
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54. A slightly different problem in the same area is the following

PrOBLEM LXIV (Szegd and Walsh). Find conditions on a sequence of
Jordan curves 1,1, ..., I, quaranteeing that the polynomials {@,(2)} are
orthogonal on every I; with some weight function piz), where pyz)
(j =1,2,...,v) are Lebesgue-integrable and =0 on I; .

Regarding the literature on the question, see Merriman [39] and Szegd’s
paper [55} simplifying Merriman’s work.

55. The fact that, for ;z! = 1 and p(z) = 1, the powers z* are ortho-
gonal, calls attention to the essential difference between polynomials ortho-
gonal on an interval and those orthogonal on the circle. While the zeros
of polynomials orthogonal on an interval with respect to some Lebesgue-
integrable weight function are simple, this is not the case for the circle.

ProBLEM LXV. Characterize the Jordan arcs or Jordan curves I for which
the zeros of the orthogonal polynomials with respect to every Lebesgue-
integrable weight function on [ are simple.

It is not impossible that the only such arcs are finite or infinite intervals.
For such arcs or curves, one can form the Lagrange interpolation poly-
nomials.

The following problem does not seem to be easy.

ProBLEM LXVI. It is known that the zeros of the nth orthogonal poly-
nomial (with respect to a Lebesgue-integrable function on an inferval) separate
the zeros of the (n - 1)th polynomial. What corresponds to this fact on the
circle?

The zeros of orthogonal polynomials on |z = 1 with respect to different
weight functions have varying characters. If z = €% and p(6) = 1, then the
zeros of the orthogonal polynomials are all at z = 0. On the othr hand, if

p(@) :41_]_ 1 — ¢ 2 = cos? g , (55.1)

then, as is easily verified,
g2y =1-+2z~ -+ (@m—+ 1)z (55.2)

The zeros of these polynomials are all simple, lie in | z| < 1, and approach
the circle |z = 1 uniformly, as n — 0. They are also very uniformly
distributed in each angular domain x < argz < 8.

Let us call these two types of weight functions, first and second types,
respectively. Weight functions of the third type are those for which the zeros
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of th »orrespondmg orthogonal polynomials are everywhere dense in
<l

ProsieM LXVIL. Do weight functions of the third type exist?

Instead of Jordan curves, we formulate the generai question for the circie
only.

Prosien LXVIIL. Find a class of weight functions p(8) on the circle
o =2% (0 £ 0 < 2n) for which the number of zeros of the corresponding
orthogonal polynomials q,(z, p) in each given Jordan measurable domain ir

z = | obeys an asymptotic distribution law as n — 0.

4

36. Ahhou‘rh the next problem is much easier, it is still, in some sense,
very interesting. As far as I know, in the theory of complex interpolatio
the knbts are always chosen to lie on the Jordan curve in question, and our
aim is to approximate functions belonging to a certain class, defined on
the closed Enterior of the curve. We have a different situation if, for instance,
7 ( ye Lip{ £’ = 1) and the interpolation knots are the zeros of the poly-

I“‘l“lb (55.1)=(55.2). (The functions in the class Lip,( z | < 1) are reguiar
in £ << and satisfy the inequality | f(zy) — filz), < M |z — z, 1 for
< 1.) So a simple form of a general problem is

ProBLeM LXIX. For which class Lip,{ z| =< 1} does the Lagrange

es
interpolation at the above knots converge uniformly in - =1
A more general question would be tc replace the polynomials (55.13-
55.2) by orthogonal polynomials corresponding to a general weight function
{ the second type. But I shall not state it as a separate problem.

,--\
-

57. The Hermite polynomials are important for vet anocther reason.
We can obtain bounds for the roots of the equation

ay+—az — gzt =0

in terms of the coefficients. For some questions, it is more imcortant 1o get
strips along the real axis which contain at least one root of {57.1}. T men-
mentioned in my lecture “Sur ’algebre fonctionnelle™ at the First P
Mathematical Congress that, for this purpose, one should write the ‘-3@3}
nomia!l in the form

boKy(2) — -+ — 8.K(z}, {67.2)

where K,(z) are the Hermite polynomials normalized by (46.5). I mentio
here only one result in this direction due to Makai and myself [36L Gﬁe
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can find further developments in the encyclopedia article [45] by Specht.
Our result in [36] asserts that any ““trinomial” equation

Ky(2) + Ki(2) + bKy(z) = 0 (57.3)

has a zero in the strip
[Imz! = ¢, (57.4)
¢ being an absolute constant. Later, Schmeisser showed that the exact value

of ¢ is 1.
A natural question is

ProBLEM LXX. Is there a constant ¢; such that any equation
Ky(2) + Ki(2) + 51K, (2) 1 byKoy(2) =0 (57.5)

has a zero in the strip
‘Imz, =¢ ? (57.6)
58. We return to the case of the interval [—1, +1]. Let g,(x) be the nth
orthogonal polynomial corresponding to the weight function p(x). As I
have shown in my paper [62], for

—1<bh—8<b+8= L1, (58.1)

we have the relation

N . 1 g dx -
lim J;_a 4u(X)? p(x) dx = — j;_a =7 (58.2)
for each integrable p(x) that satisfies p(x) > 0 and
1
fogm——¢€ L[—1, +1]. 58.3
g oy € L A (58.3)
Hence we have, for # > ny(8, p),
kad 1 pbre dx 3
2 v el A — 4
| epds > [ > (58.4)

Here, however, ny(8, p) is ineffective, that is, it cannot be calculated explicitly.
Because of a reason to be explained in the next section, we need an explicit

nO(Sa .p)
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Prosiem LXXI. Give an explicit estimate for ny(8, py such that, if (58.3)
holds, then so does (58.4), for n > ny(8, p).

59. The background of the last problem is a theorem of N.Wiener which
asserts {in its improvement by Ingham) that, if 0 << e < 1,0 < & < i, and

A

F(©) =3 a;cos vy, (58.1)
=1
where v, , v, ,..., vy are natural integers satisfying the gap condition
T € SO
Vi — Vi 2 5 {39.2}

0

and ¢g; are arbitrary complex numbers, then, with an effective c(€}, we have

o7 R . c pbtd . s o
" 1@ =<2 (77 peye an (59.2)
Y 25 “b—3
independently of N, b and the coefficients ;. Putting cos ¢t = x, {52.3)
transforms into an inequality of the type
1 g(x)'? o [ gl 20 A
" —g(—),—l‘,‘.; dx < C(E, o) J {‘gt‘}z“—z ax, {394}
dg (I —x)ie b5 (1 — xF

where (with the notation (5.5))

and the gap condition (59.2) holds. It is natural to ask whether the weight
function (1 — x?)~1/2 could be replaced by one belonging to a general class.
In other words, we ask if it is true that for

N
G =Y big, () O =v, < <wy), (5.5
i=1
we have the inequality
pl #b+8
| 16@eEp) dx < e, p) [ G2 p)) dx (59.6)
-1 Yo—8

independently of b; , N and b, if only

—1Zbp—-8<b+851,

VoY
L
v

3
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and if a gap condition
41 2 B(S:p)7 Vivr — Vj = B(alp), j = 1,- 2:"'; N—1 (598)

is satisfied, with a suitable B(3, p).

In my paper mentioned in the previous section I showed that this is true
for a surprisingly broad class of weight functions, namely, for the class of
weight functions satisfying (58.3). Since ny( p, ) was not given explicitly,
only the existence of a B(3, p) was shown. To give B(9, p) explicitly, we would
need the solution of last problem.

60. Inequalities (59.6), (59.7) and (59.8) have an interesting connection
with the theory of polynomial approximation. The theorem of Miintz and
Szdsz, mentioned in connection with Problem XLIII, states, that, if

0=myg <my < <m < (60.1)

are integers satisfying

i _1— — o0, (60.2)

then, for every f(x)eC[0, 1], and every e >0, there is a polynomial
350 bsx™i such that

<e (60.3)

N
ma, [ 16 — 3, b
In other words, in the theorem of Weierstrass, we do not need all integral,
non-negative powers of x. Instead, it suffices to take a subset satisfying (60.1)
and (60.2). We can choose m, , m, ,..., I, so that there are arbitrarily large
gaps; even m;.; — m; — <o can hold. For instance, we can take m; = [jlog/].
If we replace {x™} by the system of orthogonal polynomials corresponding
to a weight function p(x) (which is advantageous for some purposes), and
replace the interval [0, 1] by [—1, —1], then, as known, there is no theorem
of Miintz—Szdsz type. We cannot drop a single term from the sequence
{gn(x)}. On the other hand, for p(x) = (I — x¥~*%2, and f(x) € C[0, 1], f(x)
can be approximated arbitrarily close linear combinations of 7,,(x). The
general question, which seems to be very difficult, is the following

ProBLEM LXXII. Let {g(x)} be the sequence of orthogonal polynomials
on [—1, +1] corresponding to a weight function p(x). Further, let |a, b] be a
proper subinterval of [—1, —1]. Characterize the non-negative integers
ky < - <k, < - such that linear combinations of gy (x) can approximate,
arbitrarily close, every continuous function in [a, b).
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Even the following weaker form of this problem seems to be interesting and
difficult.

ProrieM LXXIIL. Suppose that p(x) satisfies condition (58.3).
that, for every proper subinterval [a, bl of [—1, —1], there isa D —= D(a,
such that 0 < D <1, and every subsequence {q; (x)} has de se finite line
combinations in the space of functions continuous in {a, bl, if only the lower
density of k, is greater than D?

61. In §26 we discussed polynomials minimizing
b &

1
{ ma(X)? p(x) dx. €i.b)
(I restrict myself to the case m = 3 in (26.5).) The next two problems a
connected with that topic.

ProsreM LXXIV. Give the minimizing polynomials in an explicit form:,
Jor weight functions other than (1 — x2)~1/%,

ProeLeM LXXV. Give an asympiotic representation of the minimizing
polynomials, valid on [—1, +1), for a weight function other than (I — x%) 172,

Resulis in this direction can be found in my paper [121 with Erdés. and
in [22] by Frenkel-Fertig.

VI. RATIONAL APPROXIMATION

62. The polynomials form a linear set. It is natural to ask what are
the basic problems in the non-linear theory of approximation. The simplest
problem of this kind is that of uniform approximation of the elements of
C[—1, —1] by rational functions, that is, by functions of the form

)3
™~
s
e’

71\x) -

where 7 F(x) and #¥*(x) are polynomials of degree <(n. Besides the problem
of approximation by polynomials, Chebyshev was already interested in the
theory of rational approximation. It is peculiar that, while the theory ¢f
polynomial approximation has had an extensive, growing literature, approxi-
mation by rational functions in the real domain did not get any atii’utiGL
from 1908 until about 15 years ago. The reason for this is probably the fac
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that for the elements of the classes Lip,[—1, —1], which served in the theory
of polynomial approximation as ‘““test classes,” approximation by functions
of the form (62.1) is not better than approximation by polynomials. More
exactly, by a slight modification of an old example of S. Bernstein, it is easy
to see that

Jio) = Y - T (3) (622)

v=1

belongs to Lip,[|—1, --1] for every 0 < o << 1. On the other hand, we have
for any R,(x),
1

max | fo(x) — Ry(x); > nelogin

_max (62.3)
(1 know this example from a letter of D. J. Newman.)

According to the theorem of D. Jackson, the best polynomial approxi-
mation of the same function is of order ¢(x) #»~*. For a long time this phenom-
enon discouraged any hope that rational approximation can do better than
polynomial approximation. Szabados [49] proved an even stronger genative
result according to which, for every 0 < x << 1, there is a function f;(x) € Lip,
such that, for every R,(x),

max A — R(xX)| > c(x) n™.

—l<e<<+1
63. A theorem of Newman of 1964 [40], according to which

)1,/2

Jx|— RE) <e ™™, 1x, <1, (63.1)
for a suitable R*(x), but, for every R, (x),
x = Rafx)l = e, (63.2)
was a great surprise. (Here ¢; , ¢, ,... are positive constants.)
This discovery raised new hopes. It was surprising because of a result in

the famous paper by Bernstein [4] of 1912, according to which, for a suitable
polynomizl w}(x) of degree <n,

Ix| =m0 <2 (=l <x<+D), (63.3)

but for every such polynomial = ,(x),

x> (63.4)

max
—l<<r=+l
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Newman’s discovery raised hopes because of the well-known role playec
by the function ' x | in the theory of polynomial approximation. (For instance,
from the approximability of ! x ' by polynomials, one can deduce Jackson's
theorem.) However, these hopes soon abated because of the observation tha
if | x ' played the same role in rational approximation as it does in the theory

of polynomial approximation, then we cculd expect fhe ele len_s

-

allows. The difference between the two kinds of appro‘(ln‘atlom is that the
sum of two polynomials of degree # is again a polynomial of degree #, but
this is not the case for rational functions. How much the hopes abated is
shown by the following problem of Newman (Intern. Series of MNumer,

Math. 5 (1964), 189) which is still open:

PROBLEM LXXVI (D. J. Newman). [Is ir true that, for every function
f(x)e Lip[—1, +1], the rate of best approximmation by rational functions cf
degree n is o(l,-n)?

It seemed that Newman’s result (€3.1), (63.2} is a beausiful but isolated
theorera for a special f(x).

64. The inequality (63.1) of Newman became of basic importance when
P. Sziisz and 1 asked whether there are “large™ classes of functions, different
from Lip,i—1, +1], whose elements can be approximated by rational
functions essentially better than by polynomials. Gf the ciasses we obiained,
I will mention only one, for which there is a particularly great centrast.
This is the class Z of functions which are continuous and piecewise anal }t
in {—1, +1]. Historically, next to the class of analytic functions, this class i
perhaps, the “most classical”. In general, as one can see, fof instance, from
(63.4), we do not have a polynomial approximazicn better than O{l:n).
On the other hand, for every f€ Z, there is a ratignai function EX{(x) such
thas

) — Ry(x) < e(f) e, {54.1)

where ¢, and ¢, depend on f but not on #n. I gave a simplified proof of
this inequality at the international conference on complex analysis at Erevan
in September 1965 [61]. From this proof it becomes clear that, if f{x) is
piecewise analytic then ¢,( f) depends only on maxi,« | f{x}. and ¢, only
on the domains containing the intervals in which f(x) is analytic. As shown

by (63.4) and (64.1), the approximability by rational functions is essentiaily
better than that by polynomials. Cne question stiil remains. By inequality{(63.2)
of Newman, e="* is the correct order of magnitude in (64.1). On the other
hand, if f(x) is analytic in a domain containing {—1, +1], then the order of
magnitude of the (best) error term is e~%Y” even with polynomial approxi-
mations.

640/29/1-6
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ProBLEM LXXVIIL. What is the “‘real reason™ for the exponent n'/? in
(64.1)? Why is it not, for instance, n?/>?

65. The first class of functions found by me and Sziisz (the first known
class of functions for which rational approximation is better than polynomial
approximation) was the class Z; of functions which are convex in [—1, —1].
As can be seen from (63.4), polynomial approximation need not be better
than O(1/n). On the other hand, we showed in [57] that, for every f(x) € Z; ,

log* n
n?

| f(x) — R < ¢5(f; €) (65.1)

in the interval [—1 + ¢, | — €], with a suitable R}(x).

Inequality (65.1) was soon improved by Freud [25] who replaced our log* n
by log?n. However, a really extraordinary improvement was achieved by
Popov [41] who showed that, for [—1 -+ €, | — €], we have

F) — R < e, e k) 2B (65.2)

for some R*(x). Here log, n is the k-times iterated logarithm. We now ask:
ProBLEM LXXVIIL. Can (65.2) be improved to

1709 — REG < elf, )5 2 653)

The last problem becomes even more interesting if we take into account
a remark of Freud, according to which an affirmative answer to it would
imply the same for Problem LXXVI.

66. 1 discussed in my lecture at Erevan the reasons why, for some classes
of functions, rational approximation is better than polynomial approximation.
The example of | x | shows that polynomial approximation can be spoiled
by a “bad” behavior of the approximated function at a single point.
Approximation by rationals is much less sensitive. It seems that rational
approximation is much less affected by a ““bad” behavior of the approximated
function at a finite number of points or even on a “small” infinite set. To
give a ‘‘quantitative” analysis of this, it is convenient to consider the
following class Z, = Zy(«, 8) of functions. Let

O<a<fB<l, (66.1)
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and suppose that, for —1 << x" < x" < |,
) —fON <X =X (66.2)
Further, suppose that a4, ,..., g, are real numbers satisfying
l =gy >a, > >a_, >a, = —1, {66.3}
and let
0<e<i mm(a —a, ). (66.4)

Assume that, forevery | < p < kandeveryva,., — ¢ < & < & <ag,
we have an inequality of the form

€)Y — f(€), < ()€ — €. (66.5)

The class of such functions f(x) can somewhat vaguely be described as the
subclass of Lip,[—1, +1] whose functions satisfy a Lipschitz conditien with
a larger exponent § on subintervals; the larger the subinterval is, the larger
is the constant with which the condition is satisfied. It is trivial that these
functions can be approximated by rational functions, even by polynomials,
to the order O(n™). In a lecture held in March 1965 at the Hungarian
Academy of Sciences on my results with Sziisz [58], T stated on the basis
of superficial reasoning that, if f€ Z, , then, for some R}(x),

LX) — RE(x) < c(f) n5,

o
N
N
)8

[

independently of 4,(¢). Later, as I was unable to reconstruct our reasonin

I mentioned the matter to Szabados, who proved a weaker form of ocur
statement. He showed that, if ,(¢) = log*{li¢) (y a constant), then, for
some RX(x),

log¥
8

) — BRI < e(f) (66.7)

(see [50]). It is still an open problem whether or not this result can be im-
proved.

ProBLEM LXXIX. Let a,f and d = dim{a, — a,.,) be fixed. What is
the fastest growth of (), allowing an inequality of the type

| F() — RA(x), < o, B, d)n® max ' F(x)i ? (66.8)

—i <]
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67. In order to formulate the problem more generally, let J be a subclass
of C[—1, +1], and denote by P,{J) the “optimal” polynomial approximation,
that is,

P(J) = sup min max 'f—ma,,. (67.1)

m, —l<<e<+1

Let F,(J) be the optimal rational approximation, that is

E(J) =supmin max |f— R,i. (67.2)

feI R, —l<e<-l

Then we pose

ProBLEM LXXX. Give sufficient conditions for J guaranteeing that

- Ey(J)
lim = Q.
nw Pr(J)

68. As Freud remarked in a conversation, a convex function f(x) admits
a polynomial approximation to the order OG(1/#* in the L-metric. This
observation, related to §65, suggests our following

ProBLEM LXXXI. Let

a1
PO(Jy=supmin | f—m, dx.
) fedl  w, v-—1

Find subclasses J for which
EL))/ P

remains between two positive constants, as n — .

69. The problem of interpolation with rational functions of degree <n
occurs already in the investigations of Cauchy. Nevertheless, a theory of
its convergence does not yet exist. The reason for this may be the following.
Put

R = 25000 vl (69.1)

and let R,, be the set of rational functions of this form. (Recall that 7, (x) is
a polynomial of degree at most £.) The values of any function of the class
R,, can be “in general”, but not always, prescribed at p -~ » + | points.
The only “natural” way of developing a theory of convergence of inter-
polation by rational functions would beto take as knots of the interpolation,
for instance, elements of the matrix 7, and to consider those R,,(x, T) which
coincide with the approximated function f at the zeros of. T,.,,.,(x). But it
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is not evident that such raiional functions do exist for any pai-r {u, v). There-
for, in order to construct a theory of convergence of rational interpolatior,

we have to first solve several problems. I mention only one:

ProBLEM LXXXIL. Let p,v be given. For uw— v — | variable kunots
X1 yeees Xpryeq , What is the maximal number M = M(u, v) such that, at least
M uf tr" relations

Ro(x;)) =y, G=L2, . ,u+v+1 {68.2}
can be satisfied for any choice of y; ?
It is trivial that M <C u, because, with the choice
=Yy = = Ju,, =G, (69.2)
no more than p equalities can be satisfied in (69.2). Of course, zero, in (69.3},

could be replaced by any other constant.

70. 1In §60, I mentioned the theorem of Miintz-Szdsz for polynomial
approximation. An analogous question, raised by Newman, is a condition on
the sequence of exponents m1; assuring that every continuous function in
[0, 11 can be approximated uniformly by rational functions having in
numerator and denominator only powers belonging to the sequence .
In contrast to (60.2) (which is also necessary), Somoriai [44] found *‘ﬂ
surprising theorem that a sufficient condition is #3; — oo, no matter how fas
this takes place. On the other hand, the following is still open.

ProBrem LXXXIIL (D. J. Newman). Find conditions on two Seguences
{m}} and {m]} assuring that every continuous functions can be approximated
arbitrarily clese by rational functions having in their numergior only powers

belonging to ()}, and in their nominator only powers belonging to {m/}.

71. Making the substitution x = e, the theorem of Miintz—Ssasz can
be stated in terms of functions on {—oo, 0]. Let Cyi— oo, 0] denote the ¢} ss
of continuous functions in (—oc, 0] satisfving f{—o0) = im,,_. f(s) =
Then condition (60.2) assures that every fe Cji—<c, 0] can be apprexi—
mated uniformly on [—o0,0] by linear combinations of p"rsor*en'-'ia‘zs
™3, Wow replace the interval [—oc, 0] by a continuous curve vy j }
to — = in such a way that the angle between each chord of y
real axis is less than #/2. Korevaar proved in 1973 that the th
Miintz-Szdsz remains true if [—oo, 0] is replaced by such
{See “‘Proceedings, International Symposium {Austin, 1973).”
problem is connected with this theorem.

baclagi1-7
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ProBLEM LXXXIV. Does Somorjai’s theorem remain true if we replace
the interval [—oo0,0] by a curve y satisfying the conditions of Korevaar’s
theorem?

72. The approximability by rational functions of functions f(z)e
C[} z i <C 1] (this is the class of functions regular in | z | << 1 and continuous
for 'z | < 1) was subject to a detailed investigation by Walsh and his
students. The common feature in their results was that the poles of
the approximating rational functions were “kept away” from |z] <1,
and the order of magnitude of the approximation was not essentially better
than that of approximation by polynomials. In my lecture at Erevan, 1
stressed the fact, which may appear paradoxical at first glance, that allowing
the poles to approach [—1, 4-1] causes better approximability. I raised the
question whether this can be also the case for the class C[|z | < 1]. The
first subclass of C[ z | < 1] with better rational approximation was found
by Szabados [51] in 1968. A characteristic special case of his result is as
follows. If f(z) is regular in |z < 1, and, with the exception of z = 1,
also in the circle ;z - 8' << 1 -+ 8 with 0 < 6 < 5, and if, further, f(2)
satisfies for | z| < 1 a Lipschitz condition with the exponent «, then

17) — Ri@) < ()21, (2.1)

for a suitable R} (x). For comparison, polynomial approximation would
give only O(1/n*). According to a remark of Newman, (72.1) could not be
improved to an upper estimate sharper than O(1/n%),

ProBLEM LXXXV (L. Leindeler). Can (72.1) be improved to O(1[n*¥)?

The domain of analyticity of every element f(z) of Szabados’s class contains
the unit disk as a proper subdomain. Now denote by S the class of functions
that are analytic in | z | < 1, and continuous in 'z | < 1 and which cannot
be continued analytically beyond |z | = 1.

ProBLEv LXXXVI. Is it true that, for f € S, we have
)~ Ri@) = o w (fi),  izi<l,
with a suitable R} ? Here o(f, 8) denotes the modulus of continuity of f.
If this is true, then probably it is the best possible inequality.
ProBLEM LXXXVII. Is it true that there is no fi(z) € S such that the best

approximation by polynomials of degree <n of f(z) is Zcy/n, but the best
approximation by such rational functions is <e—em9
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73.  All these questions pertain to the case of one real or one complex
xarlabze 1 am not familiar with the literature on apomxzmat;o*l of functions
of several real variables. There are a number of natural guestions 'svhﬂse
solutions are probably known; for instance, if #,(x, y) is a poelynomial ¢
degreepin x and vin y, and if n, isless than | in absolute value in a domain &
of the x, y-piane, then what are the exact values of

)Pﬁ

f»

F’- I i 87:17/ [
max | el and  mex, — ?
oX ! L i ocy

Thus, I do not state them as open problems. On the other hand, I mention
with some comments the following question, which is important for practical
DUrpOoses.

Let D be a bounded closed domain in the (x, y)-piane with & smooth
boundary. Let f(x,y) be a function having continuous second partiai
derivatives in D. The values of the function are known by observations at

N={u+Dy+1}-1 {73.%}
different points of D which are denoted by P, = {x,. ;)€ D. Let
uw ¥ )
T ¥) = Y Y eppxhys [73.2%
1,=C I,=0
be the polynomial having the property
7o lX; . ¥ = 7, (P = F(P), j=1.2..., N {73.3;
Now choose the points P ,..., Py so that the determinant 4(P, ..., P} of
the system is maximum:
CA(Ps ..., Pr) =  max LDy ... Oy . {73.4%

: Qyyeen QONED

It is easy to see that the maximum in (73.4) is positive. With this choice of
the points P, . the polynomials (73.2)-(73.3) are uniguely determined.
etting P = (x, 1), we have

T P) = Z poy A Bty g B

= Z FPYI(P; Py oo P
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Let (P, f, D) be the best approximating polynomial to fin D with degrees
<p and <Cv. Since, obviously,

N
Z 7‘-;);(1-)7) l]'(Pv Pl EARA] PN) = W:V(P)’ (73'6)

j=1
we have

N
7., (P) — 7w (P. f, D) = Z (f(Py) — wi(P)) - 2(P, Py sees Py). (73.7)
Let \

def

max f(P) — m5(P)l = d,.(f, D). (73.8)
Then we have

7 N
<A D1+ X WP Py Pa)) . (T39)
\ j=1

Since from (73.5) follows

(P Py sy Py <1, j=1,., N, (73.10)

we have
[f(P) — 7., (P)] < (N + 1)d.(fs D). (73.11)

The points P, ,..., Py can be determined for not too large values of u and »
by numerical methods. On the other hand, we have

ProaLEM LXXXVIIL. What can be said about the distribution of
Py ..., Py, satisfying the extremal condition (73.4) if n and v tend to infinity?

Finally, a problem which needs no comment.

ProBLEM LXXXIX (V. T. S6s). Do classes of functions ( for instance,
on the unit square) exist, for which approximation in the supremum norm by
rational functions

LN ¥)
Toywa(X5 V)

is essentially better than approximation by polynomials
ﬂ'.’sl(x ’ Yy )9
if only

3 G+ (1)
IS T D —D=Ga - Do T D =17
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