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On Some Open Problems of AppiOximation Theory*'

Communicated by Ored Shisha

In re nlathel11atica ars propollendi questionenz
pluris jacienda est, qUClJl1 soluendi. [In tnathe­
nlatics, the art ofl?rmu[ating a probiein is Jl1C;"e
caillable than that of sohing it.]

i. The present paper contains (w'ith some additicfls) par: of I:iY iectu,es
held in Summer 1975 at the Universite de Montreal. It does not comain ,ie,'.
results, w~th the exception, perhaps. of §73. It is mainly a systematic expo­
sition of some open problems, to which I \Vas led by working i:-r the f:eid
for a long time. The problems are of various degrees of difficulty but are ne,
arranged in that order. I shall indicate the problems which did cot originate
,"vith me. The most frequently mentioned name will be P. Erdos, who initiatcG
the genre "problem-paper" and who has been working with me for many
years in approximation theory. Even if all or some of the problems trea~.:;~

do not satisfy the above-quoted maxim of Camor, I still think that mOSt of
them arc problems worthy of study.

I. LAGRA:<;GE I~TERPOLATIO;-';

2. Perhaps it would be interesting to dig to the roots of the theory a:1d
to indicate its historical origins. Kev;ton, who wanted to dre.v'! conchisicr:s
from the observed location of comets at equidistant times as to their location
at arbitrary times arrived at the problem of determining 2. "geometric"
curve passing through arbitrarily many given poiEts. He solved this problem
by the interpolation polynomial bearing his name. How highly he esteemed
his result is revealed by his letter to Oldenburg of 1676, in which he wrote
that this was one of the most beautiful results he had ever achieved. Ne;vton
uses his formula to give the exact value of S:f(x) d.e in terms of the 'Values
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of f(xJ when f(x) is a polynomial of degree n, and Xv = a --'- ((b - a)in) v
(vo = 0, ... , n). His student Cotes called this quadrature formula "pulcherrima
et utilissima regula" and calculated its coefficients for n ~ 10. This work,
based on Newton's interpolation formula, must have bee quite awkward.
Application of Lagrange's interpolation formula would have simplified
it, but that was published only in 1795. Gauss's quadrature formula was
also motivated by astronomy, namely by the investigation of the orbit of
the planet Pallas. How important this formula was for Gauss is shown by
the fact that unlike many other results, this one was not only worked out
in his diary but was also published, even prepublished. The essential novelty,
compared to Newton-Cotes's formula, was that Gauss used the zeros of the
nth Legendre polynomial instead of equidistant points of observation. His
treatment was later greatly simplified by Jacobi.

Thus we see that interpolation and the theory of mechanical quadrature
are just two aspects of the study of functions given by a finite number of
observations.

3. Because of the notion of a function of that time, it was generally
believed that Newton-Cotes' quadrature formula as well as that of Gauss
converge to the integral of f(x) as n -+ 00. Only toward the end of the last
century was it noticed by Borel and Runge that in [-1, I] (which is no
restriction of generality), for the quadrature formula using equidistant points,
even such a function as (1 + X 2)-1 can be "bad." The Newton-Cotes pro­
cedure can diverge even for functions analytic in a domain containing the
interval [-1, 1]. This was proved by P61ya in 1933.

4. The question of convergence of Gauss's formula was raised by
Chebyshev who conjectured an affirmative answer to it in 1874. His conjecture
was proved 10 years later by Stieltjes and A. Markov, independently. In
fact, they found that for the convergence of Gauss's quadrature procedure,
Riemann-integrability of the function is sufficient. After this discovery, the
question naturally arose whether by replacing equidistant points by the
zeros of the nth Legendre polynomial the behavior of Lagrange interpolation
could be improved. It took another 30 years until this question was settled.
After the theorem of Stieltjes and Markov and the approximation theorem
of Weierstrass, it was hoped that there exists a (non-equidistant) system of
nodes for which Lagrange's interpolation polynomials converge uniformly,
for every function continuous in [-1, 1]. The mathematical world was
awakened from this dream in 1914 by Faber [17] who showed that there is
110 such a system.

We explain at this point our notation to be used later.
Let

(4.1)



OPE:-J PROBLEMS OF APPROXIMATION THEORY

be the basic points of interpolation. These points form an infinite trianguh>.I'
matrix. The corresponding Lagrange interpolation polynomial is denoted
by L,,(x,/, A), L,oC/' A) or L,l/). We have

n n n

L,,(x,/: A) = I fC,<:yn) lv.(x, A) = I f(x,,) f,,(x. A) = I f(xv) Ux). (4.2)
v-I .-1 "-1

where

Wn(X)
w;,(x)(x - x) ,

n n

wn(x, A) = TI (x - x"n) = TI (x - xv),
1'=1 1=1

(4.4)

Faber sho\ved in 1914, much before the theorem of Banach-Steinhaus, but
after the constructions of Lebesgue and Haar, that for the uniform con­
vergence of the Lagrange polynomials for every function continuous 0::
[- ], 1] it is necessary that

M,,(A) =

n

max I' l.,,(x)' :S: C
-!s:;x~l ;.,=1

(4.S)

with some constant C independent of n. On the other hand. he showed that,
for every matrix A,

(4.6}

Hence (4.5) can never be true.

5. Before we proceed, I would like to mention a particularly important
class of matrices A.

Let
p(x) ~ 0, p(x)EL(-l, +1). (5.; ;

As is well known, there exists a uniquely determined (up to constant factors';
system of polynomials

for which
,.1

I qn(x) qv(x) p(x) dx = 0
• -1

for n = v.

(5.2)

(5.3;

These polynomials qn are called orthogonal polynomials \\iith weight p. I~

is well known that the zeros of these polynomials are simple and lie ;n
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( -1, 1). A special class of matrices A is the class where the nth row consists
of the zeros of q,,(x). Such matrices are called p-matrices. Of special impo­
tance are the matrices belonging to the weight function

p(x) = (l - x)'(l -'- x)S (:x > -1, (3 > -1). (5.4)

The polynomials qo(x), ql(X), ... are the Jacobi polynomials belonging to the
parameters ex, (3; they are denoted P:t,i>l(x). Their importance is motivated
by the fact that P:,o,O\x) is the nth Legendre polynomial mentioned in §2
and p~~1:2,-1 2l(X) is the nth Chebychev polynomial Tn(x) satisfying

Ticos 8) = c cos nO (c const). (5.5)

The p-matrix belonging to (l - x)~(l --;- X)13 will be denoted

P(C!., (3). (5.6)

The Laguerre polynomials L~(t) and the Hermite polynomials Kn(t)
play an important role in the theory. They are defined by

roc L~(t) re-t dt = °
'0

and

j! = 0, 1, ... , 11 - 1; 11 = 1, 2, ... ,

respectively.

6. To motivate our first problem, we start with the following question.
Let the functionf(x) be known merely by observations at the points

1 ~ Xl > ... > x n ~ -1. (6.1)

We want to calculate it (approximately) at an arbitrary point x of [-1, +1]
as

n

LnCj) = I f(x.) Iv(X).
,·=1

(6.2)

We \vould like to diminish the effect of the errors of observation. If!*(xJ
is the "true" value of f(x) at x = xv, and

max ! f(x.) - f*(XJi = 0,
l.:S;;v<n

(6.3)
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then the most we can say is that the effect of the errors of observation does
not exceed

(6.4)

We ,vould like to select the most favorable points of observation. If we are
able to choose these points so that

is minimal, then we have found the Lagrange interpolation which is "least
sensitive" to observation errors. ~.ve call this in~erpolation the "most stable"
one for n observations.

Using the notation of §4, we state the following (well-kno'.vn)

PROBLEM 1. What are the rnatrices Afor lrhich

is minimal?

The question is settled only for n .:S;: 4. One of the last papers about this
subject is that of F. Schurer (Studia Sci. Math. Hungar. 1974). It was con­
jectured for a long time that the extremal matrix is P( -1, -t). For small
values of n this is false. On the other hand, it is true and known that, denot:ng
the Chebyshev matrix P(-t, -t) by T, one has

c2 being a constant.

i ~1 (T) 2 1 1 __I ~" n - -=- 109 n: :::::::.: C:2 ,
I II.

(6,6)

7. Relations (4.6) and (6.7) show that, essentially, Faber's theorem cannot
be improved. But from the point of view of stabiliIY, even a multiplicative
constant is important. Therefore, for Erdos and me it was worthwhile to
investigate the asymptotic behavior of Mn(A). In [15J we shO\ved that

2
JI..(A) ?: -log 11 - Co log 10>! n,

l~" 7T' '-' ............ ....

Using a more difficult argument, !:rdos later showed that

Al,,(A) ?: ~ log 11 - C4
7T

for all matrices A.

f-' ~\

\. ! . ~ ;

(7,2)
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From this and (6.7) it follows that

lim (-1_1- min MiA») = 3-.
n->-:c og n A 7T

(7.3)

Moreover, for n :;?: 2,

Imin Mn(A) - 3- 10g n I < C5 •
A 7T

(7.4)

8. There is another important application of (6.7) where the value of the
multiplicative constant is unimportant. Namely, it is easy to see that if

whenever 1 ~ Xl > X2 ~ -1, then we have

Ln(f, T) ~ I(x),

uniformly in [-1, 1].
Similarly, if

or
n

. max L I lv, n(x) j < cs(8) log n,
-17lk;;x~1-6 v=l

(8.1)

(8.2)

(8.3)

(8.4)

and if (8.1) is satisfied, then the uniform convergence (8.2) holds on [-1, ~ 1],
or, respectively, on [-1 -T 8, 1 - 0]. In his monograph "Orthogonal Poly­
nomials," G. Szego showed that (8.4) holds for any P(:x, ,B)-matrix. However,
it seems to be very difficult to answer

PROBLEM II. Is (8.4) true for elJery p-matrix (see §5) if cs(8) is replaced
by csCo,p) and if, on [-1, -;-1]; we have

p(x) :;?: c > O?

Under an assumption on p(x) which cannot easily be verified, (8.4) was
proved by Freud [23]. On the other hand, I showed with Grunwald in 1938
[30] that, if

(8.5)
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then, for the corresponding p-matrix P,

max I l,.,(x; P) < Cll) (n)12,
-I~x~+l .

29

9. Faber's theorem asserts only that for every o.atrix A there exists a
contieuous function fo(x) such that its Lagrange interpolation polynomials
do not converge uniformly to fo(;r). Thus, it would still be possible that for
some matrix A, its Lagrange interpolating polynomials for some continuous
function f(x) converge to f(x) for every XE [-1, I]. Even this is false,
as Bernstein [5J proved in 1931. He showed that, for each matrix A, there is
a function flex) E C[-1, -'-1], and a point in [-I, --'-1] for which the values
of LnCfl : A) are unbounded as n -+ 00. The proof is easily accomr;lished
by strenghtening the result (4.6) of Faber to

-n

Il}a~b L, l",n(x, A)! > c(a, b) log 11,
a~ro:::::::: ~.=1

(9J)

where [a, b] is an arbitrarily small subinterval of [-1, +1]. Actually, fo:
this purpose, it suffices to extablish that

n

lim max L l,.n(x, A)i = oc.
'Il .....K.fJ a~x<:'b ~'=l

(9.2)

Still stronger phenomena of divergence were discovered in 1935 by G,
Grunwald [28, 29] and (independently) by Marcinkiewicz [37] in the case
of the T-matrix which can be considered as the "best" one. They showed the
existence of a continuous f2(x) such that LnCf2 , T) is unbounded aerywhere
in [- L ~ 1] as n -> oc-. To prove this, in addition to many deep ideas, it
was also necessary to show that L~~l i l"ix, n: is unbounded as n -+ CfJ.

Erdos [14] proved in 1958 that, for every matrix A. we have

n

lim L ! lv,n(x, A), = W
fj-7X

11=1

The following question is still open:

almost everywhere. (9.3)

PROBLE:\I HI (P. Erdos). Does there exist, for e~'ery A, a function
h c C[-I, - 1] with the property that

lim ! Ln(fa, A)i = CIJ
n--'}'X;

for all x E [-1, I] except possibly for a set ofmeasure zero?
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The fact that the answer is negative if "almost everywhere" is replaced
by "everywhere" is shown by special matrices of the form

There :s another ; ,pe::,~ \\~ich makes the theorem of Griinwald­
Marcinkiewicz very interesting. It is easy to see that Ln(f, T) can be written as

n-1

ao -;- I at cos re,
r~l

where

In ( 2k-1)
ao = - )' 1 cos 2 'iT,

11 ],;::1 11

and, for r ~ 1,

') n ( 2k - 1) 2k - 1
ar = =I f cos 2 'iT cos r 2 'iT.

11 ]';~1 11 n

This is similar to the (11 - l)th partial sum of the cosine Fourier series of
f(cos e). That theorem could be a basis for the conjecture that the Fourier
series of a continuous periodic function can be everywhere divergent, and
according to the theorem of Carleson, this is false.

10. In the introduction to our paper [9], Erdos and I \vere very cautious
in making predictions about the possibility of convergence of Ln(f, A)
at x = X o to a value different fromf(O) for some matrix A. At the end of the
paper, however, we made three remarks. First, as was shown by
Marcinkiewicz, with the notation (5.6), that for A = Pet, t), the Lagrange
interpolation polynomials at a point x cannot converge to anything but the
value of the function there. Second, for T = P(-t, -t), the same is true
if

l'iT
X o =I=- cos k ' (k, I) = 1, k and I odd. (10.1)

Finally, for X o = cos('iT!3), Ln(xo ,/0 , T) can converge to any given value,
even to CD, for a suitable fo(x) E C[-1, --:-1].

The following two problems arise now in a natural way.
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PROBLar IV. What are the properties of the set ofpoints x not satisfying
(l0.1) for which the Lagrange interpolation polynomials Lih , T) can CCf1­

cerge to values d(fferent from h(x)?

PROBLEM V. How"large" is the subset ofpoints X o of [-1, -c-l] for ,rnich
L n(!2, A) can converge to a value different from h(xo) with a green A and an
appropriately chosen h(x)?

11. In addition to (9.3), Erdos [14] makes also the stronger assertim:
that, for arbitrarily small E > 0, and sufficiently small Yj = ~1(E), we have

n

I i Iv,ix, A)I > Yj log 11
,'~1

(l Ll)

for all x EO [-1,1), except, possibly, for a set of measure not exceeding E.

Instead of proving (11.1) he only remarks that the proof is analogous to

that of (9.3) but more complicated. So we have

PROBLEy! VI (P. Erdos). Work out the proof of(ILl).

From (11.1) is would follow that

1 nr I. I,ix, A i dx > 27) log 11.
.1_1 ~'=l

(11.2)

instead of this, the followig extremum problem could probably be solved
directly.

PROBLEM VII. Determine the matrices A which minimalize the integral

",1 onI L! Ivn(x, A)i dx.
"-1 ~'=l

12. We return to the subject of mechanical quadratures. In §4 I have
already mentioned that the situation here is not as bad as in the case of
Lag,ange interpolation. We have to investigate the behavior of

QnU) = f f(xvn ) ( lvn{x, A) dx,
1/=1 .... -1

(I2.l)

where A is a given matrix. We can restrict ourselves to functions defined in
[-1, -1) and belonging to some fixed class of functions. Define the Cotes
numbers as

( lvn(x, A) dx = t.vnCA) = '\n ,
0'-1

v = 1, 2, ... , n; 11 = 1,2, .... (12.2)
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(12.3)

A necessary and sufficient condition for the equality

~i~ Qn(f) = f
1
f(x) dx

to hold for allfE C[-l, 1] was found in 1918 by Hahn [32]. This, again,
predates Banach and Steinhaus's celebrated theorem, and also Hahn's
own 85-page paper in Monatsheftefur Math. und Physik (1922), where these
questions were treated in abstract form. The condition is

Lln(A) ~ f Av(A)! < C,
,'~l

(12.4)

with C independent of 11.

Although, as already mentioned, the first theorem guaranteeing con­
vergence was proved in the last century (for the Legendre matrix P(O, 0»,
the.first general theorem on this subject was proven by Erdos and myself
[9] in 1934. This theorem asserts that, for every p-matrix P, and every
Riemann-integrable function f, we have

An important special case is when

p(x) ;;?; c > 0;
then

lim ( (f(x) - Lif, P»2 dx = 0;
n->XJ "'-1

if, instead of (12.6), we assume the weaker condition

1
p(x) E L(-l, +1),

then

!,i~ f
1

. f(x) - Lif, P)I dx = 0,

(12.5)

(12.6)

(12.7)

(12.8)

(12.9)

a result which was new even for the Markov-Stieltjes case P(O, 0). Our next
problem deals with the question whether or not the exponent 2 in (12.5) can
be improved. More exactly,

PROBLEM VIII. Does there exist a po-matrix Po such that, for some
fo E C[-l, ~l], we have

J
'l

!,~ -1 ifo(x) - Ln(fo, PoW Po(X) dx = 00

for every A > 2?
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A somewhat weaker form of this problem would be

33

PROBLE'\1 IX. Does there exist a pi-matrix Pi such that, for !?C'ery giren
t, > 2, there is an f2 E C[-1, ~ 1] with

,.1

lim I ! flx) - LnCh , PJ:-\ heX) dx = if) '?
1l----"'J.. "-1

As orientation I would like to mention a theorem of Askey [l], according
to which, for every given ,\ > 2, there is a weight function P2(X) such that,
with an appropriate f2 E C[ -1, + l], for the P2-ma':rix P2 , \ve have

13, For more special weight functions p(x), one can expect the validity
of a stronger theorem than 12.5. In fact, Erdos and Feidheim [8] proved in
1936 that, for P = T, and for arbitrarily large integers k, 'vve have

whenever fE C[-l, 1].
Hence we pose

PROBLHI X (Erdos-Feldheim). Is it true that, for ere!"y Ie > 0,

(13.2)

iffEC[-l, 1], and

It was noticed by Feldheim in 1938 that, for an appropriate J~

r
-1

[f(x) - LJf, POz, t))]J dx
"'-1

is unbounded. The general case of f=~ [f(x) - L,,(f, PCY., ,8»)]2'" dx was
treated by Askey in [1].

14. Relation (12.3) can be written as

~~~ .C (LnCf, A) - f(x» dx = 0 (14.1)
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for allfE C[-I, 1]. Now we raise the question: what are necessary and suffi­
cient conditions for A in order that

~~ f
1

. Ln(f, A) - f(X)JiI dx = 0 (14.2)

for every f(x) E C[-I, --;-1]. For A = 1, one can show that (in the notation
of (12.1» in addition to (12.4)

L I Avn l < E

xvnEI

(14.3)

must also be satisfied for every set I consisting of a finite number of disjoint
intervals with total length :::::;;0,

(14.4)

For A = 2, a trivial sufficient condition is

i. r Uvn(x; A»2 dx + I Ir 'J.'n(x, A) lvn(x, A) dx , = 0(1), (14.5)
.:=1 -1 l~JI<I.l<n "'-1

and a necessary condition (according to my paper [9] with Erdos) is

f r lv·ix, A)2 dx = 0(1).
v=l -1

So we have

(14.6)

PROBLEM XI. Given A > 1, what is a necessary and sufficient condition
that

for everyf(x) E C[-l, +l]?

There are further interesting questions concerning various classes of
functions, but it shall not go into details.

15. The next problem requires some more preparation. We mentioned
twice above antedecents of the Banach-Steinhaus theorem in approximation
theory. A common feeling prevailed that all convergence theorems of
interpolation theory are related to the order of magnitude of L:=l i lvn(x, A)i.
In the paper [13] with Erdos, we investigated the correctness of this
conjecture. It became clear that this conjecture is false if one goes a little
beyond continuity.
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More specifically, we asked what consequences can be drawn frofl1

-1" M,,(A)
1m -~-- < CD

n---">'Y:- nlJ - E

and

-1" M,,(A) 0
Im--- > '

Il->:t::, n8- E

(0 < (3 < 1) about the behavior of Ln(ft A), if

(15.1 )

(15.3)

(The Lipschitz class LipJ-l, 71] consists of the functions f for which
:f(x2) - f(xl ); ~ K{ I X 2 - Xl I~, if -1 ~ Xl ~ X 2 ~ +1.) If was not
difficult to show that, for

8
O<<X<$~2

there exists anfo(x) EO Lipa[-l, +1] such that

(15.4)

In this case we say that the matrix A is "bad" for the Lipschitz class Lipo. .
On the other hand it is trivial that, if

(3 < ~x < 1, (15.5)

then Ln(f; A) --+ f(x) for every fE Lip~. We say that the matrix A is "good"
for the Lipschitz classes Lip", satisfying (15.5).

For the Lipschitz classes Lip~ v,,'here

,8 q
(3+2<a<i>, (15.6)

everything is possible. In this case there are "good" matrices as \vell as
"bad" ones. Hence, if (15.6) is satisfied, then the behavior of the "Lebesgue
constants" i\1n (A) does not determine the convergence of Lagrange inter­
polation polynomials for the Lipschitz classes Lip~ . Such cases where the
Lebesgue constants do not determine the convergence behavior of Lagrange
interpolation, will be said to belong to the "fine" theory of interpolation. Now
an analogous question can be raised for any sequence of linear operators.
I confine myself to the -theory of mechanical quadrature.
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PROBLEYJ: XII. Let 0 < (3 < 1 be given. Consider the matrices A for which

--. Dn(A) 0
lIm--- > ,
n-.?'X 11{3-r:.

(15.7)

(15.8)

for every small E > O. Find the largest interval

(15.9)

for which the theory of mechanical quadrature is "fine", that is, for which the
class of matrices A satisfying (15.7)~(15.8) contains "good" matrices as well
as "bad" ones.

The existence of such an interval was shown by Szabados [48].

16. Difficulties of a new type arise if we want to extend our theorem
(12.9) on mean convergence to an infinite interval. I ran into this problem with
J. Balazs in 1961, in connection with a physical problem. The mathematical
problem was as follows. What can be said about the Fourier transform of a
continuous functionf(x), defined for x :;?: 0, whose values have been observed
at merely a finite number of points. Since in physics it is common to assume
exponential decrease, one can formulate our question as follows: Find an
approximation to

def fOf;;
F(x) = cp(t) e-t cos xt dt,

·0
(16.1)

for x > 0, if cp(t) is continuous and if its values are known at given points
0< t1 < ... < tn'

We require that the approximating function Fn(x) satisfy the following
assumptions:

(a) If cp(t) is a polynomial of degree k in t, then, for n > k, we have

Fn(x) = F(x);

(b) For n ---+ 00, we have

Fix) ---+ F(x),

(16.2)

(16.3)

uniformly for x :;?: O.

We solved this problem taking as points of observation t1 , t2 , ... , tn the
zeros of the Laguerre polynomial L~(t) (which are known to be positive and
simple) and replaced cp(t) by its Lagrange interpolation polynomial belonging
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to these poims. (We use the notation of §4 for the interval (0, cc). The first
requirement is obviously satisfied. Denote by L * the matrix of the zeros
of L;(x), n = 1,2,.... Then (b) would follow if we could prm;e that

lim foc (rp(t) - InC rp, L *»)2 r' at = G
n--'J.co ,Jo

under the natural assumption that

lim g;(t) e-ai = 0
(--'J.'X

(16,5~'

for some 0 < a < 1.
The nrst mean convergence theorem for a general class of weight functions

is contained in my paper [3] with Balazs. If, besides (16.5) we assume only the
continuity of rp, we cannot expect more than (16.3). Therefore the folloviing
problem ar;ses:

PROBLE'v1 Xlll. if (16.5) is satisfied and the modulus of continuity of rp(t)
is given, what can be said about the behavior of! FnC,) - F(x) ?

17. From the above-mentioned paper with Balazs it becomes clear rha:
one ca:1 take

t'=l

\vhere

" def fx r L *\ _+ ,
!f;vn~x) = I Ivn(t, L ' j e . cos tx elf.

'0
(17.2)

It is easy to see that this is a rational function in .'{ ';'ihieh can be writte'1
explicitly. On the other hand, it is difficult to calculate it for large values 01"1.

PROBLE~l XIV. Find an asymptotic formula for o/,',,(x), for !1 --+ x, d,ich
holds uniformly in v and in x.

1 think, what is most esssential here is that Fn(x) gives the exact value of
F(x) for a "dense" set of ({J(t). I intend to return later to problems relatec to
this one.

We do not state here separately similar problems for other transfo,..ms, for
instance, the Hankel transform.

II. HER:\HTE-FEJER INTERPOL!\.TIO","

18. Various types of questions can be raised, in connection with the
inspired remark of Fejer's that, sometimes, conclusions oa the matrix A
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can be drawn from properties of the fundamental functions, or of the Cotes:
numbers of various interpolation formulas. For instance, using the fact that
the Cotes numbers belonging to the zeros of the Legendre polynomials are
non-negative, Fejer obtained the result that the difference between two con­
secutive zeros of the Legendre polynomial tend to zeros uniformly as n-- 00.

In fact, a much stronger statement can be made. I showed this with Erdos.
in 1938 and 1940 in our papers [10, 11]. For instance, the difference bet\veen
two consecutive zeros of the Legendre polynomial p:~,O)(x) is of the exact
order Ijn. The question whether the assumption (using the notation (I2.2))

(v = 1,2,... , n; n = 1,2,... ) (IS. I}

gives a non-trivial interval for the zeros, seems to be much more difficult.
So we pose

PROBLEM XV. Suppoxe that (18.1) holds. For each pair (v, n), determine
the exact interral to which X vn belongs.

19. After the discovery of Faber, the following question naturally arose:
Does there exist a procedure different from Lagrange's interpolation which
is "efficient" for the class C[-1, I]? Immediately after Faber's proof of his
theorem, Fejer discovered that the situation changes if we consider Hermite
interpolation, that is, the polynomials

of degree at most 2n - 1, characterized by the properties

(v = 1,2,... , n),

(given). (19.1 )

These polynomials can be written as

n n

Hn(f; A) = I f(xvn) hvn(x; A) --!- I Y~ngvn(x; A).
1.1=1 11=1

(19.2)

For the fundamental functions of the first and the second kind Fejer
found the relations (using the notation of (4.3)-(4.4»:

h ( A) - II - w;'(xvn) ( - • )! . I ( A)2
lin ,x, - ~ w~(Xvn) X .,.,"t vn ~ vn X, ,

(19.3)
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In 1916 he showed [18] that

HnU; T) ~ I(x),

uniformly in [-1, 1], for everyf E C[-1, 1], provided that

( 19.5;

This result was further improved by him in 1930 [20]. Namely, he replacec
condition (19.5) by the weaker one

( "\
Y~n = 0 lo'~ n ) ,

\ b'~ I

(19.6)

uniformly in v. (This result cannot be improved.) In 1932 Szego [54} proved
a similar result for Jacobi matrices P(x, ,8) (see (5.6» on [-1 --;- E, 1 - EJ,
aSSUEilI'.g

Y~n = 0(1). (19.7)

Because of our theorem (12.5), one could expect that there is a general cor:­
vergence theorem for the matrix A = P corresponding to the ',veight function
p(.\") \vhea

p(x) ~ c > o. ( ' (' >1\
, .I.. ;!~0/

Strangeiy enough, nothing really interesting is known in this direction. In
1954 I noted that there is a convergence theoren1 if p(cos B) sin () is positive
and continuous in 0 :(; 8 :(; 7T and if

-l-c

The reason for this is that the above condition on p assures the validity of the
asymptotic formula of S. Bernstein for the orthogonal polynomials q,,(x)
belonging to p(x). This result was improved in 1954 by Freud [24] who
shovv'ed that it is enough to assume that (8.1) is satisfied in a subinterval
(a. b) of [-1, 1]. Of course, the convergence can be assured ody in chis
intervaL The proof is much more difficult. Hence we pos:::

PROBLEilI XVI. Find a large class of Iveight functions p(x) for which (19.5)
implies

Hn(f; P) ~ lex), (~ 9.9)

uniformly in [-1 + E, 1 - E], for every f E C[-1, 1]. Is (19.8) sufficient fol'
(19.9) ?
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PROBLEM XVII. Is condition (19.8) sufficient to assure

lim ( (f - H,,(f, P»2 dx = O?
n--,)':x:; "-1

(19.10)

20. One could expect that if, for some matrix A, the corresponding
Hermite-Fejer step parabolas H;;(f, A) (see (19.2), (19.3), (19.5)) satisfy

H~(f, A) ---->- f(x) (20.1)

in [-1 , E, 1 - EJ, for every IE C[-l, IJ, then the nodes of A must be
"very regularly" distributed in [-I, IJ. I have alluded to such a theorem in
§18. An older theorem of a similar character was obtained in the investi­
gation of the following question. Let 1be a given closed Jordan curve in the
complex plane, and let the elements of A belong to l. Suppose that I is a
regular function in the closed interior of I. What is a condition on A which
ensures that

(20.2)

uniformly, in every closed subdomain of the interior? Fejer [I9J and Kalmar
[33J showed that necessary and sufficient conditions are the following: Let

II' = 0(z) (20.3)

map the outside of 1one-to-one and conformally onto Iwi> 1 (0 is contin­
uous on the closed exterior of I). To the elements in the nth row of A there
correspond points on ! w : = 1. The theorems of Fejer and Kalmar asserts
that a necessary and sufficient condition for (20.2) is that these 11 points
be uniformly distributed on . II' i = I (in Weyl's sense). We say that
H'I", 11'2" , ... , w"" are uniformly distributed on ! wi = I in \Veyl's sense, if the
number of It'vn \vhich are on a given arc of the circle I IV· = 1 divided by
n tends to 1/2rr of its length, as n ---->- 00.

In particular, if I is the interval [-1,1], then

O-I(W) =! (w + _1_) .
2 , l\'

(20.4)

Let the elements of A be denoted by XV" , and let the image points on I w . = 1
be

that is, let

e-i=i{)vn (20.5)

(20.6)
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Then the points Bvn have to be uniformly distributed in [0,17]. This can be
interpreted geometrically as follows: Let the points XV" be projected on the
semicircle over [-1, 1]. These projections have to be u:J.iformly distributed
on the semicircle in order that (20.2) be true for every f(x) analytic
in [-1, --;-1].

Now,ve consider the following question. For a given 0 < :X < I, what is
a necessary condition on the nth row of A in order that

Ln(f; A) --+ f(x)

on [-1, 1] for every

IE Lipn[-I, +1].

It follows from (15.4) and (15.1) that for E > 0 the inequalities

n

I lm(x; A)i < C(E) n(2~-1).'(l-,)--E

/;=1

and

n

I ;l",(x; A): < ClI2" (1-~)
v~l

(20.7)

(20.8)

must hold. This implies that, with some constants C, ~I = y(o:), we have

v = 1,2,..., n. n = 1, 2, .... (20.9)

Hence, according to a theorem in my paper with Erdos [11, Theorem XV],
we have

I '" 1 a - b I ( '1 '0-,-I 2... - --- n I < C Ct, E) 11 ,", <;
I a<.pvn<b 7i I

(20.10)

that is, (20.7) and (20.8) imply that the Bvn are unifonrJy distributed in inter­
vals of length 122<-1/2.

In view of the next problem, Theorem XIV of our above-mentioned paper
is even more surprising. According to this theorem, from

, 'vn(x, AY ~ T = Const,

it follows that

v = 1,2,... , n, !1 = 1,2,... , (20.1i)

! a-b:'\' 11 - -- n 'I ~ dT, E)«(a - b) 11)1/2+<.L.. ~ ... J' / /

a~evn<:.b I " I

(20. ;2)
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This means that the elements of a row in A are uniformly distributed in
intervals of length Q(n)(n where D(n) is a function tending to 00 arbitrarily
slowly.

If, for the Hermite-Fejer interpolation polynomials H;(f; A), we have
(20.1) uniformly in [-I, +1], then it is obviously necessary that

Now we ask

n = 1,2,.... (20.13)

PROBLEM XVIII. What kind of uniform distribution does the restriction
(20.13) imply for the ()vn defined by (20.6)?

Certainly it is at least as strong as (20.12).

21. After the discussion of §15, we can at once state

PROBLE),f XIX. Do the Hermite-Fejer "step parabolas" have a ''fine''
convergence theory?

It is worthwhile to state a second part of this problem as a separate one.

PROBLEM XX. Suppose that A is a matrix satisfying

n

I I hvn(x, A)i ~ Cn13(O < (3 < I),
v=l

(21.1)

where C is independent ofn. What is the greatest lower bound of the set of ex'S

for which (20.1) holds for allf(x) satisfying

f(x) E Lip,,[-I, +I]?

Section 16 makes the following problem interestilig.

PROBLEM XXI. Let H*(f, LX) be the nth Hermite-Fejb' interpolation
polynOTnial off(x) based on the Laguerre matrix L *. Is it true that

lim fX (f(t) - H.*(f, L "'))2 e-t dt = 0
n-;.x 0 n

for every continuous f satisfying (16.5)? Theorem 14.7 of Szego's monograph
[56] "Orthogonal Polynomials" suggests that the answer to this question is
affirmative.

22. The results of Fejer and Szego on convergence of the Hermite­
Fejer stepparabolas convey the impression that the convergence behavior
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of Hermite-Fejer interpolation is always better thar: that of Lagrange
interpolation. Our next problem is in this direction.

PROBLHf XXII. Let 0 < :\ < 1 be gil.:en. Find a matrix Ax such that,
for all f E Lip,,(-1, 1), Ire have

Li1, A x) -'>-1.

uniformly in [-1, -1], whereas for some f '" we have

lim max H"'(f"', A"')! ='J'J.
1l~:C -l~x~l

(22.1)

If such a matrix exists, it would mean Ihat Lagrange interpolation may
be "good" for a large class of functions for which Hermite-Fejer inte"'­
polation is not a good means of approximation. On the other hand. can it
happen that the step parabolas belonging to a given matrix A are "much
worse" than the Lagrange parabolas belonging to the sanee A? Thus \\'c
are led, for instance, to the following

PROBL£lI,oI XXIII. Let 0 < Ji < 1 be given. Suppose that A x is such that
L,,( f, A") -'>- / uniformly in [-1, 1] for every f E LipJ-1, 1]. Is it true that
there exists an integer r such that if g is r-times continuously dijJerentiable
in [-1, 1], then H;( g, A"') ->- g uniformly in [-1 - E, 1 - E]?

An affirmative'answer to this question seeGlS to be the case because of the
fact that from our assumption follows, as in §20, that

n

L I,.. ,,(x, A x)! < Ci'1 h . ll-~\

~'=1

~l~x~l. (22.2)

23. The first theorem drav,:ing a general conclusion from the behavior
of the polynomials H*(j, A) on those of L(j, A *) was found by Fejer. He
calls a matrix A "strongly normal" if, for ali n and for v = 1, 2'>0" n, \ve have

"( ,
I Wn X",n) (v y) >- .> 0

- W' (x ) A - --,.n c;/ P ,
n :',i1

(23.n

where p is independent of v and n. He proved that in this case,

uniformly in [-1, -1 ], if/E Lipn[-1, -L 1], G > t. I n his posthumous paper
[31], Grunwald showed that, for such a matrix A,

H:Cf, A) -'>- f,

uniformly in [-1, '-:"'1], for all/E C[-I, '-:"'1~.

(23.2)
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It is likely that (23.2) alone can assure that Ln(f, A) cannot behave "too
badly." Such a conjecture can be formulated as

PROBLEM XXIV. Is it true that, for any matrix A * satisfying (23.2), we
have Ln(f, A *) ---+ f for all functions f which are continuously differentiable
in [-1, I]?

24. It is natural to ask about the "real reason" for theorem (19.4)-(19.5)
of Fejer. Thinking geometrically one could imagine that by letting the deriv­
ative be zero, we prevent the interpolatIon polynomials from "jumping".
If it were so, then by not prescribing a value of the derivative at a single point
of A, we would not change the situation too much. Of course, the degree
of the interpolation polynomial

(24.1)

would then be <.2n - 2. Call the point Xv(n)n = Xv(n) for which the value
of the derivative is not prescribed, the exceptional point. At the end of the
thirties I raised the question to my friend E. Feldheim, How do the inter­
polation polynomials behave in [-1, +1] if limn..,.", X,'(n)n ---+ g, g being an
interior point of [-1, I)? Feldheim found that the polynomials converge
uniformly in the two intervals we get by removing an arbitrary small neighbor­
hood of g from [~l, +1].

In my paper [60] dedicated to the memory of Fejer, I described a peculiar
situation concerning the critical point. The polynomials H;*(fo, T) are
uniformly bounded in [-1, +1], but for some fo(x) E C[-l, +1] and
g = cos(T/15) they do not converge.

One can ask

PROBLE~I XXV. Can one distribute the exceptional points in [-1, +1]
so that, with someh{X) E C[-1, +1], the polynomials (24.1) would be uniformly
bounded in [-1, 1] and would dilJerge elJerywhere?

Since problems concerning further peculiarities of H**(f, T) have been
solved by Vertesi [63] and by Meir et al. [38], I end my discussion here.

25. I return to the theorem of Gauss already mentioned in §1 which
states that if A = p* is the matrix of the zeros x;n of the Legendre poly­
nomials (or using the notations of (5.6), if p* = P(O, 0», then the relation

(25.1)

is true not only for polynomials T/(x) of degree <.n - 1 but even for poly­
nomials of degree ~211 - 1. As a further preparation to our next subject I
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mention Hermite interpolation, according to which, if rIll"'" inn are arbitrary
natural numbers, then for the points (4.1) there is exactly one polynomial
G(x) of degree not exceeding

. . .. _ 111 _ 1 ~f ~;/11 1 - 1112 - 'n L ~,.

for which

(25.2)

(j = 0, 1, ... , m,. - 1, v = 1, ... ,11).

If

(this is the case of main interest to us), then G(x) can be written as

n

G(x) = I G(xvn) Imo(x; A)

(25.4)

n n

- I G'(xvn) Iml(x; A) --:- ... --:- I Gim-1)(X",,1 l,·n.,,,_lx; A). (25.S)
"~l "~l

where !vn;(x; A) are the fundamental functions of Hermite interpolation.
Hence, the formula

~-l n ~1

! G(x) dx = I G(xvn ) I Imo(x; A) dx - ...
~j-l v=I .I_I

n ~l

+ I GUn-l)(x",,) r 1,'n.m-I(X; A) dx
v=l ""--I

is exact if G(x) is a polynomial of degree at most 111n - 1 aDd the points (4,))
are arbitrary. The numbers

r] ~ def
I f, ,.lx, A) dx = A",..;
"-1

(j = 0 ... 111 - 1; r = 1, ... ,11,11 = 1. 2, ... ,)

(25,7;

,NiH be called Cotes numbers of higher order.

26. Because of the theorem of Gauss it is natural to ask whether knOts
(4.1) can be chosen so that the quadrature formula (25.6) will be exact for
polynomials of degree not exceeding (m - 1) n - 1. In my paper [59],
which appeared in 1950, I showed that the answer is negative for m = 2
positive, and it is for m = 3. Furthermore, I proved that the uniquely
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determined matrix A consists of the zeros of the polynomial 1T,~(X) which
minimizes the integral

where

1r 1T,,(X)J dx,
>-1

1Tn(X) = Xn + ....

(26.1)

(26.2)

More generally, the answer is negative for even, and positive for odd 111.

The unique matrix A, for odd m, is given by the zeros of the polynomials
minimizing

,.1I 1TnCX)"'-ldx.
>-1

(26.3)

It is known and also directly provable that these zeros are all simple and
contained in the interval (-1, -+- 1). Gauss's theorem follows, for m = 1,
by a known extremum property of the Legendre polynomials.

Little is known about the extremal polynomials of (26.3) for 111 ~ 3. I
shall return to this question. Instead of (25.6), it is also interesting to investi­
gate the analogous formula

rG(x) p(x) dx = f G(xvn)rIvno(x, A) p(x) dx + ... ,
-1 "~1-~

(26.4)

with a weight function p(x) as in §5. Then the role of the integral (26.3)
is taken over by

( 1Tn(x)iJl+l p(x) dx.
> -1

Particularly interesting is the case

(26.5)

(26.6)

By a theorem of S. Bernstein, in this case, the nth Chebyshev polynomial
is the minimizing polynomial for odd values of m. The formula

r
1 G(x) r _ ~'G ( 2v - 1 ) J01 I."ix; T) d '

(1 2)1/2 ax = L - cos -2-- 1T (1 2)112 x --;-- ...
>-1 - x' v~1 11 -1 - X '

(26.7)

is exact for polynomials G(x) of degree not exceeding (m --'-- I) 11 - 1. Since,
as I remember, formula (26.7) is used in methods of Runge-Kutta type, the
following problem seems to be interesting.
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PROBLD-l XXVI. Gire an explicit formula for

and determine its asymptotic behavior as n ---+ 0C.

27. Before proving his convergence theorem, mentioned in §19, Fejer
investigated the step parabolas in the classical case where the k:1Cts are the
zeros of Legendre polynomials. He found that the convergence is uniform
in [~l ~ E, ] - E], and at x = --;-1 lind x = -1 the step parabolas tene.
to t J~d(x) d.y. In my joint paper [7] with Egervary, we observed that if the
step parabclas are replaced by the pQlynom~als of degree ~2n ~ 1 tak;:,g
the values cf the function and of its derivative at the Legendre zeros, and the
values of the function at x = =1, then the convergen:e becomes uniform.
This theorem was generalized by Szasz [53] in 1959 and by Berman [6] in
1973. For arbit,"ary Jacobi matrices P(c" :3), the question is nQt yet settled.
For general \veight functions, nothing is know,l. Therefore we can ask ,:1e
follmving two questions.

PROBLHI XXVII. Find a class of weight fimctions p(x) such that, for the
matrix P arising from p(x), and for the polynomials E2n-c-1U, Pi git.:?11 by

the limit rdation
,. - ( ~ P\·( ,
1\~~ .t2n - 1 J, ... , = j X)

holds uniformly in [-1, --'--1].

Pi<.OBLDl XXVIII. Gh·e a general class of matrices P stich that, j(H aU
fcC[ - 1, +1].

""lim I (f - E2T +1(f, P»)Z pC:) dx = O.
,1-->0:: .'-1

III. BIRKHOFF OR LAcuc\ARY I:"TERPOLATIO",

28. The basic problem of Hermite interpolation is the de:ermina~ion 0':'

the polynomial ,,(x) of minil1:.al degree for wh'cn

,,(;.)(.,J can be prescribed (k = 0,1, ... , l7<j - l,j = 1,2, ... , n). (28.1)
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(28.2)

That is, the consecutive derivatives are prescribed. G.D. Birkhoff, in 1906,
was the first to consider the general case, where we drop the requirement
of being consecutive. While polynomials of the previous kind always exist,
in Birkhoff's case, polynomials satisfying his conditions do not necessarily
exist. Hence, we have the basic questions:

(a) existence,

(b) uniqueness,

(c) possibly, explicit representation,

(d) convergence,

(e) applications.

Birkhoff assumed (a) and (b) and was mostly interested in (e), for instance
in studying the error term in mechanical quadrature. In the middle of the
1930's, I had a conversation with Fejer on interpolation. I mentioned to him
that it would be interesting to investigate, for the matrix T, the sequence of
polynomials of degrees not exceeding 2n - 1, for which the values of the
function and those of the second derivative are given at the knots. (One
calls this (0, 2) interpolation.) The only work in this direction he knew was
a paper ofP61ya of 1931. He did not know of Birkhoff's work. Having looked
at Birkhoff's paper, I realized that he did not consider questions of con­
vergence. I postponed study of this question to complete my current inves­
tigations. Then events of world history intervened so that I was able to carry
out this study only in 1955. Since we did not have any matrix for which
existence and uniqueness of (0, 2) interpolation polynomials were known,
I analyzed with Suninyi [47] the case where the knots are the zeros of the
ultraspheric polynomials p~~'~)(x), including the case a = -1. It turned out
that there can be uniqueness only for

n = 2k,

but even in this case, it is not always guaranteed.
This motivates the following

(28.3)

PROBLHI XXIX. Find all Jacobi matrices pea, {3), a =1= {3, for which the
(0, 2) interpolation problem does have a unique solution.

(29. If in the nth row of a matrix A there are n interpolation points, then
A is called "very good" if, for arbitrary sets of numbers Yvn and Y;n , there
is a uniquely determined polynomial Dn(f; A) = Dn(f) of degree at most
2n - 1 for which

(29.1)
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In that case, D,,(f; A) can be uniquely written as

n n

Dn(f, A) = L f(xv,,) 'vix; A) - I y;:"pjx; A),
/;,=1

where

49

(29.2)

and

=0

ifj = ;",

otherwise;

(j = I, 2, ... ~ n);

(j = 1,2,... , n);

if v = j, (29J')

= 0 otherwise.

The polynomials 'v,,,(x) and Pv.,,(x) are called the fundamental functions of
the first and second kind of the interpolation procedure.

30. It turns out that not the T-matrix but rather the IT-matrix is the
"handiest" for the problem, even when the restriction (28.3) ~s needed. The
kth row of this matrix IT is given by the zeros of the polynomial

.. x

7T2/lx) = I P2k-l(t) at
'"'-1

(30.1 )

P2k-l(t) being the (2k - i)-th Legendre polynomial; in particular X i ,2;; = 1,
""Y2k.2k = -1.

I published the first theorem on convergence with Balazs in 1958 [2j.
I shall not go into details on this subject. I want only to mention that there
is some freedom in choosing the Y;n . Namely, we need only the restriction

This restriction cannot be weakened.

as 11 -->- c:i). (30.2)

31. Before proceeding, I would like to make some general remarks on
the theory of lacunary interpolation.

In his report "Birkhoff Interpolation Problem" (Center for Numericai
Analysis, The University of Texas at Austin, 1975), G.G. Lorentz very nicely
summarizes and complements the litarature on the problem. He is mostly
interested in questions of regulairty, namely, characterizing those natural
numbers

(j = 1,2,... , nl (3Ll)
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(n given) for which, with arbitrary choice of the knots

(31.2)

the polynomial 1T(X) of degree at most 11 + 12 + ... -r In - 1 is uniquely
determined by the relations

v = 1,2,... , Ij ;j = 1,2,... , n, (31.3)

for each choice of the Yjv .
This problem is important even if n does not tend to 00. In fact, the question

is interesting even for n = 2, a case solved by P61ya. As stated on p. 79 of
Lorentz's report, the complete solution of this nice question (originating
with Schoenberg) is hopeless. Lorentz also mentions that Birkhoff was not
interested in problems of regularity, even though his results contained some
sufficient conditions for that. When mentioning the theory of convergence,
Lorentz refers to my work with Balazs [2] as the first results. About these
and many other related results concerning similar matrices, he says that
they all depend upon a very special selection of knots, for which explicit
formulas are possible. It is worthwhile to reproduce here the reason for our
selection of knots, indicated also in [2].

We look for the global solution of the classical differential equation

y"(X) - rp(x) y(x) = 0

on the positive real line. Let

o < ?hn < 'i72n < ... < Tlnn ,

(31.4)

(31.5)

and let Al be the matrix belonging to these values. Then, with Ym's to be
determined later, and with Y:n = cp(xvn) Ym , the polynomial

n

D,,(y, AI) = I yv.,,[rvnCx; AI) + 'F(xvn) Pvn(X; AI)]
~'=l

satisfies Eq. (31.4) at "YJm for any choice of the Ym's. Put

D~(x) - er(x) D.,,(x) ~ f Yvngv.,,(x; AI)·
v=l

Let the initial conditions be, for instance,

(31.6)

yeO) = 1, y'(O) = O. (31.7)
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Then there are two linear relations between the Y,,/s. Subject to these relations
we have to minimize the quadratic form

It can be expected that, for n --->- cx;, the interpolation polynomials D"
converge to the solution of (31.4) \vitb the initial conditions (31.7). (There
are many ways of modification and the initi2.l conditions (31.7) can be
replaced by other conditions.) If we want to be able to handle (3.18), we
need control over the integmls

(31. 9)

We can expect to have this control jf we can calculate the functions g,ix; AI)
or the fundamental functions r,.,,(x; AI) and p",,(x; AI)' Therefore, the phrase
"very special knots" refers to looking for an explicit basic matrix for 'shieh
the fundamental functions have a simple form. Suc!:l investigations can gi,'e
valuable information even if they do not give a final answe:".

We shall make a further remark in §38.

32. If we take as knots the zeros of'iT21:_1(x) (see (30.1)), then we have a
rather u.nusual case in the theory of convergence of interpolaticL processes.
For odd n, there are infinitely many polynomials with the required properfes.
So \\'e have

PROBLEI\,I XXX. Im;estigate the general theon' of lacunary (Birkhoff)
intel~lJolation processes for f E C[-1, --'--1].

With his theorems (19.4)-(19.6), Fejer settled the problem of convergence
in the "simply infinite" process, where there are bcunds only on : Y;n .

33. In §28 we defined "very good" matrices. We say now tha:: a matrix
A is "good" if, for v = 1,2,... ,11, and n = 1,2,... , there exists at last one
set of functions r",,(x; A) and Pvn{x; A) \\'ith the proper:ies (293) and (29.4)
The question of the "most stable" (0, 2)-intec.-palatio'1 is the fonO\\'~ng

PROBLer XXXI. Which "good" matrix A H·m minimize

'n

max L· 1",'n(X, A); ?
-l~X:::;;;l

1,=1

Let'iTl de!iote the matrix defined by (30.1). I showed '.vith Balazs [2J that

n

max L: f llo n(X; 711) ::( C~J1,
-[';;",';;1 v=1

(33.2)
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where C1 is a numerical constant. This cannot be improved since

n

max L i rvn(x; 7T2)1 ~ c2n.
-1";;"''';;1 v~l

I believe that for any "good" matrix A,

(33.3)

(33.4)

If this is true, then the matrix 7T1(X) is not "far from the optimal A". (A
bibliography on Hermite-Birkhoff interpolation was compiled at the end of
1975 by P. L. J. van Rooij, F. Schurer, and van Wait von Praag.)

34. Fejer's theorem mentioned in §19 gives a great freedom in choosing
the points Y:n without "spoiling" the convergence. That (19.6) is sufficient
follows immediately from Fejer's theorem stating that

n 2
max I I gvn(x; T)i = (1 + 0(1» -log n.

-1 ~re'::::;;-l v=1 7Tn
(34.1)

The question which naturally arises is whether this freedom in choosing
Y~n is the best possible in Fejer's result, that is, whether or not we can allow
more than (19.6) for Y~n . This question, that is, the problem of the "freest"
(0, I)-interpolation, is equivalent 0 finding a matrix A minimizing

n

max I I gvn(x; A); .
-l~m'::::;;l v=!

(34.2)

We answered this question, at least asymptotically, in a paper with Erdos
mentioned in §7. We showed that, for any A,

n 2
max I I gvn(x; A)[ > - (log n - c log log 11),

-I ";;"''';;1 "~l 7T11
(34.3)

that is, T gives asymptotically the best result for the "freest" (0, 1) approxi­
mation. The corresponding question for (0, 2) interpolation is the following

PROBLEM XXXII. Which is the "good" matrix A, minimizing
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Rahman, Schmeisser, and myself [42] showed that, with some constant c,

n r

max I i P"n(x; A)! >-;-
-l~re~-l .. nOd

~'=.L

for every "good" matrix A.
F or the matrix 7T defined in §30,

C n ~2
---.! ~ max I I Pvn(x: 'iT). < - .
n -l~x~+l v=l ". 11

The plausible and apparently difficult conjecture is that, for any
matrix,

n
'\ c~max L! Pvn(x; A) > -=- ,

-1 :<X~l v=l n

(34.4)

(34.5)

(34.6)

which, essentially, cannot be improved.

35. Let A be "very good" in the sense of §28. Then ~se have, for every
polynomial of degree at most 2n - 1,

(35.1)
n ",1

+ I 7T~n-l{X~'n); Pvn(X; A) d:x:.
v=l V_I

The question arises whether we can choose A so that (35.1) remains valid
for polynomials of higher degree. This can be formulated as

PROBLEM XXXII. Determine the matrices A, if any, for which (35.1)
holds for all polynomials ofdegree ~2n.

36. As we have seen in §15, Lagrange interpolation has both a "coarse"
theory and a "fine" one of convergence and divergence. For the Hermite-­
Fejer interpolation polynomials H;(f; A), if we assume (21.1) and

1-· 1 ~ . h ( A' , 01m s=- max L! V'll x, )1 > ,
1l~~ n t: x

v=l

(36.1)

then we can see that the procedure is "bad" for the class Lip,,[-1, _c- 1],
for all 3: satisfying

(36.L::.
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Thus, these classes fall into the "coarse" theory. A slight generalization of
Problem XX makes it plausible that the classes (36.2) give the entire "coarse"
theory of Hermite-Fejer interpolation. The analogous questions for (0, 2)
interpolation seem to be more complicated because of (33.4). That inequality
suggests an affirmative answer to the following

PROBLEM XXXIV. Is it true that, for every given "very good" matrix A,
andfor every 8 > 0, there exists an

(36.3)

for which

(36.4)

Even if conjecture (33.4) is true, (36.4) can be proved only for i < 8 < 1
if we follow the proof of(15.4).

37. If there is an affirmative ans\ver to the previous question, then in the
convergence theory of (0,2)-interpolation, the role of the classes (I5.3)
is taken by functionsf(x) which are continuously differentiable in (-I, + I],
and for which

rex) E LipA~l, --'-1].

Here is a problem corresponding to Problem XX.

(37.1)

PROBLE:v1 XXXv. Suppose that for a "very good" matrix A we have

n

max . L i rPn(x; A)i < nP•
-1~3;'~--;-1 v=l

Find the vlaues of ex for which r E Lip,,(-1, -:-1] implies

* def n \. I'

D~(f, A) = I f(x"nj r,nlX, A) --+ f(x),
"~1

(37.2)

(37.3)

uniformly in (-1, -,-1].

It is likely that, except for the last remark in §33, (0, 2)-interpolation does
not have a "coarse" convergence theory.

38. As mentioned in §28, in his paper, Birkhoff obtained for arbitrary
"very good" matrices a general formula for the error term in mechanical
quadrature. 'Without mentioning here some disadvantages of his remainder
term, we merely note that it involves the 2nth derivative of the function.
On the other hand, my theorem with Balazs gives, in the case of the special
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,,-matrix, convergence of the quadrature for functions j(x) \vhich are
differentaible and whose derivative belongs to a Lipschitz class with arbitrarily
small exponent. Connected with this is the following

PROBLEM XXXVI. What is the "best" class of functions f:v ,,'hcn the
bltegrals of the polynomials

, ,I £( ) d ?tenG to J-lJ x x.

n

L f(xvn ) ryn(x, 'iT)
"~1

(11 even)

39. The previous discussion could be completed in the negative direction
by an affirmative ans\ver to the following

PROBLDI XXXVII. Does there exist. for every "good" matri.\: A. (1

jUl1ction!o(x) E C[-l, -1] such that, with the notation (37.3),

I .1 ,
-.- ¥ f'. A",,~ ....."....0
~JElI L

1
D"U, A) d" , - .~. (3S.1)

Perhaps even the existence of such an .1o(x; A) E LipQ[-I. --;-1] ca;t be estab­
lished.

A classical theorem of Steklov [46] and Fejer [21] guarantees that, if a
matrix A satisfies

then

1'-1 lvn(.x;; A) d.\." ? O.
'-1

~1 ~l

lim I r (f A) ax - j f(x) dx
n-'X --I ~n, ". - .'-1

(39.2)

(39.3)

for every Riemann-integrable! By analogy, one could expect that it is ad'ian­
tageous to study mechanical quadrature for (0, 2) interpolation \vith matrices
A satisfying

rrvn(x; A) dx ? 0,
-1

Our next problem is related to this.

11 = 1, 2~ ... , Ji, J1 > 110 . (39.4)

PROBLDI XXXVIII. Does there exist a matrix A satisfying (39.4)?

1!1 the case of a "very good" matrix A, an affirmative answer to Problerr;
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XXXVII would give a negative answer to Problem XXXVIII. Namely, for
such a matrix A,

n

L rvn(x; A) == 1.
v=l

Thus, if If! ~ 1, then

1r D:(f; A) dx 1~ fIr rvn(x; A) dx , = ±( rvn(x; A) dx = 2.
I -1 'v~l I -1 'v~l '-1

which contradicts (39.1).
"Good" matrices with the extremal property of the following problem

certainly play an exceptional role.

PROBLEM XXXIX. Determine the "good" matricesfor which

is minimal.

An affirmative answer to the following question would be very useful.

PROBLEM XL. Is it true that, for "good" matrices A,

max_1';;X';;+1 L ' Pvn(x; A)! c ')
", ( A)I < 2'max~l';;"'';;+lL- rvn x; n

(39.5)

If it is, then because of the 7T-matrix, it cannot be essentially improved.
A somewhat stronger conjecture is given in

PROBLEM XLI. Is it true that, for every good matrix A,

max max_I';;",';;+!: Pv,,(x; A)I
,'~1,2, ... ,n max-1';;"'';;71 ! rvn(x; A)I

C
< -?2 •n

IV. INTERPOLATION ON CURVES

40. So far we dealt with interpolation on the interval [-I, + I]. Now
we study interpolation on a Jordan curve or arc I lying in the complex plane.
The theorems of Fejer and Kalmar mentioned in §20 gives a necessary and
sufficient condition for the relation

lim L,,(f; A) = f(z)
n-W:;

to hold, for f analytic on I.
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What happens if we assume only continuity of J, and if I is "not very
smooth," is a different question. (The problem when! is a broken line con­
sisting of two segments was mentioned to me by D. J. Newman.) If

II' = ep(z) (40. I}

is the analytic function mapping one-to-one the outside of 1onto 'll' > j,

then it is natural to choose the knots Zvn so that

,(_ _ .(,2_11----:-,---1.:-)_'Ti_i
q;'"'vn) - exp - 2

i1
II = L 2, ... , 11: n = 1,2,.... (40.2)

The real difficulties and deviations from the case of the interval [-1, --:-1]
will be more clearly understood if we take for I the curve

where
10: :(:;0:

(40.4)
1m z :> o.

It can easily be verified that, in this case,

ep(z) = tan ;7 .
. k

Thus, the knots are given by

'Ti (2v - 1) 'Tii

tan -4- = exp 2 '
Zm n

1/ = 1~ 2~, .. a n; 11 = !~ 2,<... (40.5)

I think that the matrix defined in this way corresponds to 1. A theoren:
corresponding to (4.6) and (7.1)-(7.2) would follo',,- by the solution of the
follO\ving

PROBLD.-I XLII. If the elements of A are 011 II defined by (40.3)-(40.4),
then the minimum of

r,

(40.6)

with respect to A is asymptoticall.v taken for the matrix defined by {40.S).
What is its wille?

Of real interest are problems corresponding to specific choices of the curve i.
More specifically, we would like to know how the singularities of I influence
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the approximation by polynomials on this curve. This line of thought
raises also the question "vhat is the "correct" definition of modulus of con­
tinuity. Should we define it (for rectifiable I) by

1JJ1(8,j) = max If(x') - f(x')!,

where x' and x" are on I and their distance measured on I is <;;8, or by

(40.7)

max I f(x') - f(x"), ?
:r,' ,[elf El

.x·-x":~6

(40.8'

It is likely that 1JJ1(8,j) is the correct one. If so, how about non-rectifiable
curves I? Hence,

PROBLEM XLIII. What modulus ofcontinuity should be used in the analogs
of the theorems of Jackson, S. Bernstein and l\,funtz-Sztlsz for curves I with
singularities?

For recent developments, compare Freud and Vertesi [26] and Kis and
Vertesi [35] and the abstract of E. D. Lesley in the November, 1975 issue
of the Notices of the American l\,fathematical Socie(v.)

It is very likely that if I is continuously differentiable or satisfies some even
stronger conditions, then the whole classical theory of approximation can
be extended to it. Furthermore, it is very probable that such questions have
already appeared in the literature. Therefore, I do not formulate them as
open problems.

41. The case where I is closed, especially when I is the unit circle, has
been the subject of many investigations. Here the role of the class C[-1, -1]
is played by C[I z i <;; 1] whose elements fez) are regular in I z; < 1 and
continuous in i z! <;; 1. The elements of the matrix A are on I z i = 1.
Although it is clear that Lagrange interpolation is not good in general, it
is still possible that the question corresponding to Problem I has an elegant
solution.

PROBLEM XLIV (A conjecture of Erdos). Is it true that if the elements
of A are on the unit circle, then

n

~in ~'~1 I ' Ivn(z)'
!I=l

(41.1)

is attained if the knots are the rertices of a regular n-gon? (We denote such
a matrix by Ao .).
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In the case of [- i, ~ 1], switching from Lagrange interpolation to Hermite
interpolation has helped to achieve convergence. In the case afihe unit circle,
this does not help. According to a remark of Kovari, none of the processes
used so far is always convergent. Thus we have the followir:g

PROBLEM XLV (Kovari). Does there exist an interpolation process
which com;erges for every fE c[i ;;:: :0.( 1], uniformly in ~ l? (A resldt
in this direction can be found in Szabados [52].)

One could think that the case; z: ~ 1 is always "worse" than that 8I

[-1, +1]. However, this is not always so. For instance, in contrast to con­
jecture (33.4) which is supported to some extent by (33.2) and (33.3), O. Kis
sho\ved that, for the fundamental functions of the first kind r,r.(z; A()) of
(0, 2)-i:1terpolation,

n

,1~1~t I i fvn(Z; Ao): ~ clog 11,
. "~1

(41.2)

which is essentially better than (33.3). It is probably simple to give a lowel'
estimate for the left-hand side of (41.2).

Although it does not look difficult, it seems worthwhile to investigate the
follo\'ving

PROBLHI XLVI. Is it true that, for all fE Cr z! :0.( IJ,

42. A different and interesting question (in its simplest form) IS how
the function eX can be approximated by polynomials on the entire real axis.
Our next problem concerns this question.

PROBLEM XLVII. What is the smallest a = a{n) such that

max I eX - 7T n(X)! ?: I
-a(n) :::;;x~a(n) . ,

for every polynomial7TnCx) of degree ~11?

Denote by Co the positive root of the equation

1 + (l + X2)1'~
expel - X 2)1/2 = ---"----'----

-,
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(0.66 < Co < 0.67). Revesz [43] showed that, for n ;;, no(E), the value of
a(n) is between

and con + (~o + E) log n.

V. ORTHOGONAL POLYNOMIALS

43. In §5 I have mentioned orthogonal polynomials and their essential
role in the theory of interpolation. In the general theory of approximation
by polynomials, their significance can be illustrated by the fact that if p(x)
is a given weight function, and

rj2(x) p(x) dx
-1

exists, then the minimum of C~ fl(x) - 'iin(X)j2 p(x) dx is taken on by the
polynomial 'iin(x) which is the nth partial sum of the expansion off in the
orthogonal polynomials qo(x), q1(X)' .... corresponding to the weight function
p(x). S. Bernstein (globally) and G. Szego (locally) gave asymptotic represen­
tations for qn(x) under certain assumptions on p(x). For many purposes these
beautiful formulas are "too strong," and weaker conclusions would be
sufficient. On the other hand, we would need such a weaker conclusion under
essential relaxation of the conditions on p(x). In this connection I mention
a 50-year-old conjecture by Steklov.

PROBLEM XLVIII (Steklov). Let p(x) satisfy (12.6). Is it true that, for the
polynomials qnCx), orthonormalized on [-1, +1] with weight p(x), we have
in [-1 + E, 1 - E] the inequality

(43.1)

independently ofn?

Related to this is the following

PROBLEM XLIX. Is it true that, if

then

(43.2)

uniformly in [-1, +I]?

n = 1,2,... , (43.3)
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There is great interest in this problem, due to the follo\ving fact. As
mentioned in §8, Freud proved (8.4) for certain matrices P under an assump­
tion on p(x) which cannot be easily checked. This assumption is just (43.3).
Hence an affirmative answer to the last problem would also yield (SA)
under the condition (43.2).

44. The asymptotic formulas of Szego and Bernstein are of the IO:·J.L

(44.1)

Here eo is a fixed number satisfying E ~ Bo ~ 'Ti - E. In this formula n ->- 00.

The function if;«() is determined by p(x). Formula (44.]) holds if, putting

deC

p(COS () sin (J ;; Pl{B),

one has the relation

IPIer} ~ h) - PI(B)i < c log-J-a~ .
: It !

(44.2)

(44.3)

Condition (44.3) is sufficient for (44.1). As far as I know, the question of
whether or not it can be replaced by a weaker one is still open.

PROBLEM L. Does there exist a weight fimction p(x) for which

p(x)(l - X2)I!2 E C[-l, ~l],

p(x)(l - X 2)Ij2 ;?: iJi > 0,
(44.4)

and for which, with some Bo (0 < Bo < 7T), the orthogond pofynorniafs q"
do not obey any asymptoticformula of type (44.1)?

To illustrate the difficulty of the problem, I mention that, in my paper with
Erdos mentioned in §20, we showed that, if (44.3) holds, then, using the
notation (20.6), we have, for

the relation

45. In 1938 Erdos and I flO] showed that, if the integrals

r i

! p(x) dx
·'-1

and
r 1 dx
1­
.1_1 p(x)
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exist, then writing the zeros of the orthgonal polynomials as cos Bv•n , we have

log (n --;- 1)o< BV~l n - B"n ~ c(p) ., . n

It is natural to ask

PROBLEl\I LT. Can the upper estimate (45.2) be improved?

(45.2)

In our paper, we obtained (45.2) as a corollary of a more general theorem
which as we showed by a counter-example, cannot be improved. However,
we do not have such a counter-example for zeros of orthogonal polynomials.

46. Consider now the orthogonal polynomials qn(x) belonging to the
weight function p(x). We assume they are normalized as

(46.1)

It is known that the recursion formula

holds, where

Cn >0.

(46.2)

(46.3)

It was an important discovery by Favard, that, conversely, any sequence of
polynomials satisfying (46.2)-(46.3) is orthogonal with respect to some weight
dcx(x). About this weight function very little is known. I know only of some
results of Chihara who drew conclusions from the behavior of the coefficients
Bn and Cn on the behavior of cx(x). Many years ago I suggested as a problem
for the Schweitzer competition, proof of the formula

lim (~) n Kn (-2n ) = e-z',
n-'>cL n z

(46.4)

where Kn(t) is the nth Hermite polynomial defined in (5.6) with the normali­
zation

rx; KnCt)2 e-tJdt = (;,-)1/2 2"n !
-ex;

(46.5)

The interest in this formula lies in the fact that the weight function is
reproduced in a simple way by the orthogonal polynomials, for real z's.
It would be desirable to be able to recover the weight function in such a way
for a broader class of such functions.
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PROBLEM LII. Is there a formula for the Jacobi polynornials
analogous to (46.4)? Or, is it true that

implies p(x) = e-,,2?

63

(46.6)

47. Formula (46.4) is interesting also in another respect. For fixed
o < a < b it gives an asymptotic representation of Kn(z) in the annulus
an ,,;; . z ! ,,;; bn, namely,

KrI(z) = (1 + 0(1»(2z)" e-n 'l4Z'. (47.l)

The asymptotic behavior of the Kn(z)'s is treated in great detail by Szego [56J.
Let us denote their zeros by

(47.2)

Then ,"ve have, as n -+ CJJ,

(47.3)

We can divide the asymptotic formulas into two large classes.

(a) "Outer" asymptotic formulas, valid off the real axis.

(b) "Inner" asymptotic formulas, valid on the real axis.

Since all the zeros are real, the second class of asymptotics is more inter­
esting. Within this classification of asymptotic formulas, we have further
subclasses. One of them pertains to the domain ' =' ~ R, R independent of
11, another to the constraint

(47.4)

c being a constant. (Note that none of these classes pertains to the domain of
(47.1).)

Because of(47.3), the second type is more interesting because it gives infor­
mation on the oscillatory behavior of the polynomials.

48. The Hermite polynomials have received much attention m the
literature. One of the reasons for this interest is that it was haped that infor­
mation about these polynomials (and about the Laguerre polynomials)
would lead to a general asymptotic formula for polynomials orthogonal
on an infinite interval. Very little of these hopes has ~aterialized so far.
The first task should be to find the "fine" domains, that is, to solve ~he

follo\ving
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PROBLEM LUI. Suppose that, for the weight function p(x) > 0, p(x) E

L(-w, (0), the moments satisfy

(" ' x In p(x) dx < 00, n = 0,1,.... (48.1)

What asymptotic representation can be given for

(a) X 1n = g(n, p), (b) x nn =7](n,p)? (48.2)

This problem is interesting even for subclasses of weight functions.
It is easy to see that maxv I X vn I tends to infinity as n -> 00. In 1960, I

thought that I could construct a p(x) satisfying (48.1) for which X nn > -c,
that is, a p(x) for which,

g(n, p) -> 00, 7](11, p) > -c. (48.3)

From my notes of that time, I am unable to make a valid reconstruction.
Hence I propose

PROBLEM LIV. Does there exist a weight function p(x) for which (48.3)
holds?

49. The asymptotic formulas on Hermite polynomials mentioned in
§47 indicate the character of such formulas to be expected for polynomials
qn(x) corresponding to a p(x) satisfying (48.1). Regarding outer asymptotic
formulas, first for [-1, +1], I mention here two results. The first one is a
theorem of Szego, valid for p(x) satisfying

p(x) ~ 0, p(x)EL[-I, --':"'-1], log-i- p!x) EL[-I, +1]. (49.1)

This theorem (stated for orthonormal polynomials) can be found in
[56, pp. 296-297]. In my paper with Erdos mentioned in §20, we assume only
that

and

p(x) ~ 0, p(x) E L[-1, +1] (49.2)

p(x) > ° a.e. (49.3)

However, we do not get an asymptotic formula for qnCx). What we do obtain
is

(49.4)
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uniformly in any bounded domain in the plane cut along (-1, +1]. We
assume there that the highest coefficient in q",(x) is 1. The proper choice of
the branch of the nth root is obvious.

PROBLEM LV. Does there exist, for p(x) with non-compact support, an
asymptotic representation of type (49.4)?

The following is basic.

PROBLHi LVI. For which general class of weight functions p(x) satisfying
(48.1) is there an asymptotic formula for qr;{x), valid in every bounded closed
domain lying in 1m x > O?

Perhaps it is possible to get such a result from the theorem of Szego
mentioned earlier, by an appropriate passage to the limit.

50. As already mentioned in §47, the really deep questions concern
"inner" asymptotics. For instance, it would be interesting to determine the
behavior of the orthogonal polynomials in the interval

Here we use the notation (48.2). Since, at present, there are no general
theorems on Problem LIlI, I do not state this question as a numbered
problem.

PROBLE'\f LVII. Find a subclass of weight functions p(x) satisfying (48.1),
for which the corresponding orthogonal polynomials have an asymptotic repre­
sentation for -a ~ x ~ a, with arbitrarily large a.

We have somewhat easier questions when we investigate the distribution
of the zeros in the interval (I)(n, p), ~(n, p». The only known result in this
direction is due to Erdos [16]. Its statement, in qualitative form, ;s that, if
p(x) decreases "very rapidly" as x ->- =c:tJ, then after transforming the
interval (xnn , Xl") linearly into (-1, 1), the zeros are uniformly distributed
in the sense of §20 on the semicircle over (-1, l). In the case of Hermite
polynomials this is not true. Thus we are naturally led to

PROBLEM LVIII. Find a class of weight functions p(x) sati~j"ying (48,1)
which is larger than that ofErdos, and for Il'hich we hare uniform distribution
of the zeros ofq,,(x) on the semicircle mentioned above.

51. A seemingly easier question concerns the Cotes numbers

v = 1,... ,i1;n = 1,2,.... (51.l'J
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For the interval [-1,1], I showed with Erdos in our paper mentioned in
§20 that, if (44.4) holds, then, for all v's satisfying

(51.2)

we have

(51.3)

uniformly in v. This result suggests the following

PROBLEM Ux. Give a subclass of weight functions satisfying (48.1) for
which there is an asymptotic formula of the type (51.3).

The method used in our paper may be a good starting point in solving
this important problem.

52. The problem of asymptotic representation can be treated very well
in the case of weight functions whose orthogonal polynomials satisfy a
differential equation or have a "handy" generating function. The recursive
formula for the Hermite polynomials Kn(x) of (5.6) is

Kn(x) = 2xKn_1(x) - 2(n - 1) Kn-lx).

Assume that, instead of this relation, we have

where a, b, c, d and e are numerical constants satisfying

(52.1)

(52.2)

a> 0, cx2 -'- dx T e ~ 0, for x ~ 2. (52.»

Then, according to Favard's theorem, qa(x) is a sequence of orthogonal
polynomials corresponding to some weight dOi(X). If v,;e consider x as a para­
meter, the function

F(z; x) = L qn(x) e-nz

n~O

(52.4)

satisfies a differential equation of the second order in z. This enables us to
investigate the behavior of F(z, x) and qn(z) by means of complex function
theory. Because of continuity reasons, one can expect that, with an appro­
priate choice of a, b, c, d and e, the weight function must be positive on the
whole real axis. In this way one could increase the class of weight functions
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for which there is an inner asymptotic. The same holds if we replace the
constant b in (52.2) by an appropriate polynomial of second degree in n.

PROBLE:vI LX. Investigate the inner asymptotfcs for the orthogonal pa!/­
nomials belonging to the above generalizations of(52.1).

The study of even more general recursions seems also possible.

53. Szego and Carleman introduced orthogonal polynomials in a broader
sense. (See Szego [56, pp. 364-366].) I shall not consider here the most
general case. Let I be a rectifiable Jordan curve. If p(~) ;? 0 is defined far
~ E I, \\ie say that the polynomials <p,,(z) = <Pn(z; I, p) are orthogonal in
Szego's sense if the relations

for v < il,

(53. i:'

hold, : f : being the length of I. Carleman replaced the assumption of recti­
fiability by a weaker one. Namely, he replaced the line integral along I
by the double integral over the interior of I. Of course, the weight function is
defined, in that case, in that domain. These polynomials are important because
they are closely connected with the function @(z) which maps the outside
of I one-to-one onto 1l" > 1. In fac!'

for every z exterior to I. For his polynomials, Szego developed outer and
inner asymptotics, the latter under rather strong conditions on 1. It is a
natural task to weaken them. Results in this direction, which are probably
improvable, can be found in D. Gaier's monograph "Konstruktive Method
del' konformen Abbildung," p. 136. I shall not formulate such proble:ns
explicitly. I state here only the follm,Ying related questions.

PROBLH[ LXI. Let I be a rectifiable Jordan curce. Is there an elegant direct
relation between Szego's orthonormal polynomials and Carieman's, perhaps
with appropriate iFeight jimctions?

PROBLH1 LXII. Is there an inequality connecting the tH'O kinds of poly­
nomials?

PROBLEM LXIII. If the domain enclosed by I caries, hOI,' do the orthogonal
polynomials change?
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54. A slightly different problem in the same area is the following

PROBLEM LXIV (Szeg6 and Walsh). Find conditions on a sequence of
Jordan curves 11, 12 , ••• , Iv quaranteeing that the polynomials {<Pn(z)} are
orthogonal on every lj with some weight function plz), where plz)
(j = 1,2,... , v) are Lebesgue-integrable and )':0 on lj.

Regarding the literature on the question, see Merriman [39] and Szego's
paper [55] simplifying Merriman's "vork.

55. The fact that, for i z! = 1 and p(z) == 1, the powers zn are ortho­
gonal, calls attention to the essential difference between polynomials ortho­
gonal on an interval and those orthogonal on the circle. While the zeros
of polynomials orthogonal on an interval with respect to some Lebesgue­
integrable weight function are simple, this is not the case for the circle.

PROBLEM LXV. Characterize the Jordan arcs or Jordan curves I for which
the zeros of the orthogonal polynomials with respect to every Lebesgue­
integrable weight function on I are simple.

It is not impossible that the only such arcs are finite or infinite intervals.
For such arcs or curves, one can form the Lagrange interpolation poly­
nomials.

The following problem does not seem to be easy.

PROBLErv[ LXVI. It is known that the zeros of the nth orthogonal poly­
nomial (11Iith respect to a Lebesgue-integrablefimction on an interval) separate
the zeros of the (n --'- 1)th polynomial. What corresponds to this fact on the
circle?

The zeros of orthogonal polynomials on [z' = 1 with respect to different
weight functions have varying characters. If z = e i8 and p(B) = 1, then the
zeros of the orthogonal polynomials are all at z = O. On the othr hand, if

1
pCB) = 4:

then, as is easily verified,

(55.1)

qn(z) = I -+- 2z --'- ... + (n ,- 1) zn. (55.2)

The zeros of these polynomials are all simple, lie in : z I < 1, and approach
the circle I z: = I uniformly, as n ->- ,x). They are also very uniformly
distributed in each angular domain :x ~ arg z ~ {3.

Let us call these two types of weight functions, first and second types,
respectively. Weight functions of the third type are those for which the zeros
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of the corresponding orthogonal polynomials are everywhere dense !n

,=: < 1.

PROBL£:I.f LXVII. Do weight functions of the third type exist?

Instead of Jordan curves, we formulate the general question for the circle
only.

PROBLBI LXVIII. Find a class of weight functions peg) on the circle
:: = ei6 (0 :;:;; 8 :;:;; 27T) for which the number of zeros of the corresponding
orthogonal polynomials q,,(z, p) in each given Jordan measurable dornain in

.,. ::::: I obeys an asymptotic distribution law as n -> 00.

56. Although the next problem is much easier, it is still, in some sense,
very in:eresting. As far as I know, in the theory of complex interpolation,
the knots are always chosen to lie on the Jordan curve in question, and our
aim is to approximate functions belonging to a certain class, defined on
the closed interior of the curve. We have a different situation if, for instance,
fez) E Lip,( z: :;:;; 1) and the interpolation knots are the zeros of the poly­
nomials (55.1 )-(55.2). (The functions in the class Lip,,{ z I :;:;; 1) are regular
in < I and satisfy the inequality i f(zl} - !(Z2): ~ A1 i Zl - 2 2 i~ for

2"1 !, . =2 , c:::;; 1.) So a simple form of a general problem is

PROBLE\! LXIX. For which class Lipi: z i :;:;; 1) does the Lagrange
interpolation at the aboGe knots converge uniformly in .:: ;::: 1?

A more general question would be to replace the polynomials (55.1')­
(55.2) by orthogonal polynomials corresponding to a general weight function
of the second type. But I shall not state it as a separate problem.

57. The Hermite polynomials are important for yet another reason.
We can obtain bounds for the roots of the equation

in terms of the coefficients. For some questions, it is more important to get
strips along the real axis which contain at least one root of (57.1). I :nen­
mentioned in my lecture "Sur l'algebre fonctionnelle'" at the First Hungarian
Mathematical Congress that, for this purpose, one should write the poty­
nomia! in the form

where Kn(z) are the Hermite polynomials normalized by (46.5). I mention
here only one result in this direction due to Makai and myself (36). One
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can find further developments in the encyclopedia article [45] by Specht.
Our result in [36] asserts that any "trinomial" equation

has a zero in the strip

I Imz I ~ C,

(57.3)

(57.4)

c being an absolute constant. Later, Schmeisser showed that the exact value
of cis l

A natural question is

PROBLEM LXX. Is there a constant C1 such that any equation

has a zero in the strip

I Imz, ~ C1 ?

(57.5)

(57.6)

58. We return to the case of the interval [-1, +1]. Let qn(x) be the nth
orthogonal polynomial corresponding to the weight function p(x). As I
have shown in my paper [62], for

-1 ~ b - [) < b + [) ~ -"-1,

we have the relation

. rb-"O 9 1 rb+o dx
l~ ,_ qn(x)- p(x) dx = - L (I _2)1 '2 '
11 'x • b-o 7T • b-o - X /

for each integrable p(x) that satisfies p(x) ~ 0 and

log-'- P(~) E L[-l, +1].

Hence we have, for n > no([), p),

0-;-0 1 ho dx [)
r Qn

2(x) p(x) dx > 2- f (1 2)1'2 > -.Jb- O 7r b-o - X / 7T

(58.1)

(58.2)

(58.3)

(58.4)

Here, however, no([), p) is ineffective, that is, it cannot be calculated explicitly.
Because of a reason to be explained in the next section, we need an explicit
no([),"p)·
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PROBLEM LXXI. Gire an explicit estimate for !l()(8, p) such that, if (58.3)
holds, then so does (58.4), for n > 110(0, Pl.

59. The background ofthe last problem is a theorem of N.Wiener which
asserts (in its improvement by Ingham) that, if 0 < E < 1,0 < 8 < 1, and

x
1(1) = I aj cos v/,

j~1

where )/1 , ]J2 , ••• , v...... are natural integers satisfying the gap condition

71---:-£
"'HI - Vj ;?~ ,

(59.1)

(59.2)

.and aj are arbitrary complex numbers, then, with an effective C(E), we have

(59.3)

independently of N, b and the coefficients aj. Putting cos t = x, (59.3)
transforms into an inequality of the type

(59.4)

where (with the notation (5.5))

1\'

g(x) = I aJ,..(x)
j~l .

and the gap condition (59.2) holds. It is natural to ask whether the weight
function (1 - X2)-1/2 could be replaced by one belonging to a general class.
In other words, we ask if it is true that for

IV

G(x) = L bjqvj(X)
j~l

we have the inequality

(59.5)

,.. 1 ~b+8

I ! G(x) [2 p(x) dx ~ Cl(O, p) , ' G(x)i 2 pyx) dx
"'-I "'0-8

independently of bj , Nand b, if only

-1 ~ b - °< b -+- i3 ~ 1,

(59.6)

(59~7)
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and if a gap condition
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Vj+! - Vj ~ B(o, p), j = 1,2,... , IV - I (59.8)

is satisfied, with a suitable B(o, p).
In my paper mentioned in the previous section I showed that this is tme

for a surprisingly broad class of weight functions, namely, for the class of
weight functions satisfying (58.3). Since no(p, 0) was not given explicitly,
only the existence of a B(o, p) was shown. To give B(o, p) explicitly, we would
need the solution of last problem.

60. Inequalities (59.6), (59.7) and (59.8) have an interesting connection
with the theory of polynomial approximation. The theorem of Muntz and
Szasz, mentioned in connection with Problem XLIII, states, that, if

°= mo < ml < ... < m n < ...

are integers satisfying

(60.1)

(60.2)

then, for every I(x) E qo, I], and every E > 0, there IS a polynomial
L:o bj x1n

; such that

(60.3)

In other words, in the theorem of Weierstrass, we do not need all integral,
non-negative powers of x. Instead, it suffices to take a subset satisfying (60.1)
and (60.2). We can choose mo , ml , ..• , Inn so that there are arbitrarily large
gaps; even mHl - mj ->- 00 can hold. For instance, we can take m; = [j logj).
If we replace {x"'} by the system of orthogonal polynomials corresponding
to a weight function p(x) (which is advantageous for some purposes), and
replace the interval [0, 1] by [-1, -1], then, as known, there is no theorem
of Muntz-Szasz type. We cannot drop a single term from the sequence
{qn(x)}. On the other hand, for p(x) = (l - X 2)-1/2, andf(x) E qo, l],j(x)
can be approximated arbitrarily close linear combinations of T2v(x). The
general question, which seems to be very difficult, is the following

PROBLHI LXXII. Let {qv(x)} be the sequence of orthogonal polynomials
on [-1, +1] corresponding to a weight function p(x). Further, let [a, b] be a
proper subinterval of [-1, ~ 1). Characterize the non-negative integers
k l < ... < k v < ... such that linear combinations of qk (x) can approximate,
arbitrarily close, every continuous function in [a, b]. v
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Even the following weaker form of this problem seems to be interesting and
difficult.

PROBLEM LXXIII. Suppose that p(x) satisfies condition (58.3). Is it true
that,for erery proper subinterval [a, b] of [-1, -,-1], there is a D = D(a, b, p)
such that 0 < D < 1, and every subsequence {qk/X)} has dense finite linea;'
combinations in the space of functions continuous in [a, b], if only the lower
density of k v is greater than D?

61. In §26 we discussed polynomials minimizing

(61.1)

{I restrict myself to the case m = 3 in (26.5).) The next two problems are
connected with that topic.

PROBLDI LXXIV. Give the minimizing polynomials in an explicit form,
for weight functions other than (1 - X2)-1/2.

PROBLE,'vl LXXV. Give an asymptotic representation of the l1umrmzmg
polynomials, wlid on [-1, --i-l],for a weightfimction other than (1 - )(2)-li2,

Results in this direction can be found in my paper [12] with Erdos, und
in [22] by Frenkel-Fertig.

VI. RATIONAL ApPROXIl\IJI..TIO~

62. The polynomials form a linear set. It is natural to ask what are
the basic problems in the non-linear theory of approximation. The simplest
problem of this kind is that of uniform approxima~ion of the elements of
C[-1, ~ 1] by rational functions, that is, by functions of the form

(62.1)

where 7T;(X) and 7T;;'*(X) are polynomials of degree ~n. Besides the problem
of approximation by polynomials, Chebyshev \Vas already interested in the
theory of rational approximation. It is peculiar that, while the Lheory c:
polynomial approximation has had an extensive, growing literature, approxi­
mation by rational functions in the real domain did not get any attention
from 1908 until about 15 years ago. The reason for this is probably the fact
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that for the elements of the classes Lip."[-1, ~ 1], which served in the theory
of polynomial approximation as "test classes," approximation by functions
of the form (62.1) is not better than approximation by polynomials. More
exactly, by a slight modification of an old example of S. Bernstein, it is easy
to see that

(62.2)

belongs to Lip",[-l, -'--1] for every 0 < ex < 1. On the other hand, we have
for any RnCx),

max Ifo(x) - Rn(xY;> 11 3
-1";"''';+1 ' n"- og n

(62.3)

(I know this example from a letter of D. J. Newman.)
According to the theorem of D. Jackson, the best polynomial approxi­

mation of the same function is of order c(x) n-ex
• For a long time this phenom­

enon discouraged any hope that rational approximation can do better than
polynomial approximation. Szabados [49] proved an even stronger genative
result according to which, for every 0 < .x < 1, there is a functionJ;.(x) E Lip",
such that, for every Rn(x),

max !.f~(x) - R,..(x) 1 > c(ex:) JC"-,
-1";,,,";,1

63. A theorem of Newman of 1964 [40], according to which

:xi,s;;l, (63.1)

for a suitable R*(x), but, for every RnCx),

(63.2)

was a great surprise. (Here C1 , C2 ,." are positive constants.)
This discovery raised new hopes. It was surprising because of a result in

the famous paper by Bernstein [4] of 1912, according to which, for a suitable
polynomial7T;(x) of degree ,s;;n,

'I' X()' C3X ' -7T'X.<-
In, n

but for every such polynomial 7TnCx),

(-1 ,s;; x ,s;; +1), (63.3)

(63.4)
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Newman's discovery raised hopes because of the well-kuO\vn role played
by the function I x I in the theory of polynomial approximation. (For instance.
from the approximability of ! x ' by polynomials, one can deduce Jackson's
theorem.) However, these hopes soon abated because of the observation that
jf i x ! played the same role in rational approximation as it does in the theory
of polynomial approximation, then \ve could expect the elements of'
LipJ-1, +I} to be better approximated by rational functions than (63.3)
allows. The difference between the two kinds of approximations is that the
sum of two polynomials of degree n is again a polynom:al of degree n, but
this is not the case for rational functions. How much the hopes abated is
shown by the following problem of Newman (Intern. Series of Xumer.
Math. 5 (1964), 189) which is still open:

PROBLEY! LXXVI (D. J. Newman). Is it true that, for euery function
fIx) E Lip[-1, -T 1], the rate of best approximation by rational functions of
degree it is o(1;'n)?

It seemed that Newman's result (63.1), (63.2) is a beautiful but isolated
theorem for a special fIx).

64. The inequality (63.1) of Newman became of basic importance when
P. Sziisz and I asked whether there are "large" classes of functions, different
from LiPa[-I, --'-1], whose elements can be approximated by rational
functions essentially better than by polynomials. Of the classes we obtained,
I v.-ill mention only one, for which there is a particularly great contrast.
This is the class Z of functions which are continuous and piecewise uaa]ytic
in [-1, + l]. Historically, next to the class of aualytic functions, this class is,
perhaps, the "most classical". In general, as one can see, for instance, fro:n
(63.4), we do not have a polynomial approxima~ic;} better than O(1'n).
On the other hand, for every fE Z, there is a rational function R;:(x) su~~h

that

(54 .1)

where CI and Cz depend on f but not on n. I gave a simplified proof of
this inequality at 'the international conference on complex analysis at Erevan
in September 1965 [61]. From this proof it becomes clear that, if f(x) is
piecewise analytic then CI(f) depends only on maxi"l>;;l J(x) , and C2 only
on the domains containing the intervals in which fIX) is analytic. As shovin
by (63.4) and (64.1), the approximability by rational functions is essentially
better than that by polynomials. One question still remains. By inequality(63.2)
of Newman, e-C(ll)li

2 is the correct order of magnitude in (64.1). On the other
hand, ifI(x) is analytic in a domain cor:taining [-I, -+- 1], then the order of
magnitude of the (best) error term is e-c31f)n even with polynomial app:.-oxi­
mations.
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PROBLEM LXXVII. What is the "real reason" for the exponent n1/ 2 in
(64.1)? Why is it not, for instance, n2 /3 ?

65. The first class of functions found by me and Sziisz (the first known
class of functions for which rational approximation is better than polynomial
approximation) was the class Zl of functions which are convex in [-I, -'--I].
As can be seen from (63.4), polynomial approximation need not be better
than O(1/n). On the other hand, we showed in [57] that, for every f(x) E Zl ,

(65.1)

in the interval [-I + E, I - E], with a suitable m:(x).
Inequality (65.1) was soon improved by Freud [25] who replaced our log4 n

by log2 n. However, a really extraordinary improvement was achieved by
Popov [41] who showed that, for [-I + E, I - E], we have

. f() R*()' (I, k) logk n, x - n X I < C6 , E, -2-
n

(65.2)

for some R*(x). Here logk n is the k-times iterated logarithm. We now ask:

PROBLEM LXXVIII. Can (65.2) be improved to

i f(x) - R:(x) I < c(j, E)~ ?
n

(65.3)

The last problem becomes even more interesting if we take into account
a remark of Freud, according to which an affirmative answer to it would
imply the same for Problem LXXVI.

66. I discussed in my lecture at Erevan the reasons why, for some classes
offunctions, rational approximation is better than polynomial approximation.
The example of ; x i shows that polynomial approximation can be spoiled
by a "bad" behavior of the approximated function at a single point.
Approximation by rationals is much less sensitive. It seems that rational
approximation is much less affected by a "bad" behavior of the approximated
function at a finite number of points or even on a "small" infinite set. To
give a "quantitative" analysis of this, it is convenient to consider the
following class Z2 = Z2(CX, (3) of functions. Let

o < ex < f3 < I, (66.1)
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and suppose that, for -1 ~ x' < x" ~ 1,

;j(x') - f(x")i ~ , x' - x" ~.

Further, suppose that a1 , ... , ai, are real numbers satisfying

and let

o < E < t min(a" - G"-l)'
IJ.

"i~
! f

(66.2)

(66.3)

(66.4)

Assume that, for every 1 ~ fl. ~ k and every a"~l --;- E ~ t < t < au - E,

we have an inequ.ality of the form

(66.5)

The class of such functions f(x) can somewhat vaguely be described as the
subclass of Lipa[-1, +1] whose functions satisfy a Lipschitz condition 'with
a larger exponent [3 on subintervals; the larger the subinterval is, the larger
is the constant with which the condition is satisfied. It is trivial that these
functions can be approximated by rational functions, even by polynomials,
to the order O(n-o). In a lecture held in March 1965 at the Hungarian
Academy of Sciences on my results with Sziisz [58], I stated on the basis
of superficial reasoning that, iffE Z2 , then, for some R~(x),

(66.6)

independently of <p...{E). Later, as I was unable to reconstruct our reasoning,
! mentioned the matter to Szabados, who proved a weaker form of our
statement. He showed that, if t(;,,(E) = logY(l/E) (y a constant), then, for
some R~(x),

f(x) - R
n
*,(x),,' < (f\ log? /l

C,_.J~ (56.i)

(see [50]). It is still an open problem whether or not this result can be im­
proved.

PROBLEYl LXXIX. Let 0:, [3 and d = dim(a" - a,,+l) be fixed. What is
the fastest growth of f...{E), allowing an inequality of the type

i f(x) - R"'(x) , < c(o:, [3, d) n-8 max 'f(x);?
n -l~x~l

(66.8)
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67. In order to formulate the problem more generally, let J be a subclass
of C[-1, +1], and denote by Pn(J) the"optimal" polynomial approximation,
that is,

Pn(J) = sup min max If - 'Tr", I.
feJ Ton -l~x~+I

Let En(J) be the optimal rational approximation, that is

EnCJ) = sup min max If - R", i •
fEJ Rn -1 ";;"''';;71

Then we pose

(67.1)

(67.2)

PROBLEM LXXX. GiL'e sufficient conditions for J guaranteeing that

68. As Freud remarked in a conversation, a convex function/(x) admits
a polynomial approximation to the order 0(1/n2) in the Lrmetric. This
observation, related to §65, suggests our following

PROBLEYI LXXXI. Let

1'1
P~l)(J) = sup min, .f - 'Trn : dx.

f~J IT" '-1

Find subclasses J for which

remains between two positive constants, as n ---->- XJ.

69. The problem of interpolation with rational functions of degree ~11

occurs already in the investigations of Cauchy. Nevertheless, a theory of
its convergence does not yet exist. The reason for this may be the following.
Put

fL, v ~ I, (69.1)

and let Rv.v be the set of rational functions of this form. (Recall that 'TrlcCX) is
a polynomial of degree at most k.) The values of any function of the class
Rv.v can be "in general", but not always, prescribed at fL ~ v + I points.
The only "natural" way of developing a theory of convergence of inter­
polation by rational functions would be'to take as knots of the interpolation,
for instance, elements of the matrix T, and to consider those Rv..(x, T) which
coincide with the approximated function f at the ,zeros of Tv.+v+1(X), But it
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is not evident that such rational functions do exist for any pair (fL, v). There­
for, in order to construct a theory of convergence of rational Illterpoiatior..,
we have to first solve several problems. I mention only one:

PROBLBI LXXXII. Let p.., v be given. For [1, - v -:- 1 rariable knots
Xl , •.. , X,,~v-'-l , what is the maximal number AI = :.1(O, v) such that, at least
A[ of the reiations

(j = 1,2,... , fL + v + 1) (69.2)

can be satisfiedfor any choice ofYj ?

It is trivial that M ~ p.., because, with the choice

Yl = -,V 2 :::= ••• .::=: Y~-!-·-l = 0, (69.3)

no more than p.. equalities can be satisfied in (69.2). Of course, zero. in (69.3),
could be replaced by any other constant.

70. In §60, I mentioned the theorem of Muntz-Szasz for polynomial
approximation. An analogous question, raised by Newman, is a condition on
the sequence of exponents mj assuring that every continuous function in
[0, I} can be approximated uniformly by rational functions having i:l ,heir
numerator and denominator only powers belonging to the sequence {mj}.
In contrast to (60.2) (which is also necessary), Somorjai [44} found the
surprising theorem that a sufficient condition is I11J -+T.::, no matter how fast
this takes place. On the other hand, the foHowing is still open.

PROBLEi>1 LXXXIII (D. J. Newman). Find conditions on tH'O sequences
{m;} and {mJ} assuring that every continuous functions can be approximated
arbitrarily close by rational functions having in their numerator only POW£1"S

belonging to {m;}, and in their nominator only pOll'ers belonging to {m7}.

71. Making the substitution x = e', the theorem of Miintz-Ssasz cal:
be stated in terms of functions on [- 00, 0]. Let CJ [ - CD, OJ denote the dass
of con:inuous functions in (- oc>, 0] satisfying f( - CD) = limo~_x f(s) = O.
Then condition (60.2) assures that every IE Col- x, OJ can be approxi­
mated uniformly on [- Y), 0] by linear combinations of exponemials
em},. !":ow replace the interval [- ee, 0] by a continuoils curve 'Y joining 0
to -::c in such a way that the angle bet\veen each chord of 'Y and the
real axis is less than 71';2. Korevaar proved in 1973 that the theo~'em of
Muntz-Szasz remains true if [- x·, 0] is replaced by such a curve y

(See "Proceedings, International Symposium (Austin. 1973).") Our nex:
problem is connected \vith this theorem.
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PROBLEM LXXXIV. Does SomOljai's theorem remain true if we replace
the interval [- 00, 0] by a curve y satisfying the conditions of Korevaar's
theorem?

72. The approximability by rational functions of functions fez) EO

C[! z i ~ 1] (this is the class offunctions regular in I z! < I and continuous
for ~ z i ~ 1) was subject to a detailed investigation by Walsh and his
students. The common feature in their results was that the poles of
the approximating rational functions were "kept away" from I z! ~ 1,
and the order of magnitude of the approximation was not essentially better
than that of approximation by polynomials. In my lecture at Erevan, I
stressed the fact, which may appear paradoxical at first glance, that allowing
the poles to approach [-1, +1] causes better approximability. I raised the
question whether this can be also the case for the class C[I z! ~ 1]. The
first subclass of CL z I ~ 1] with better rational approximation was found
by Szabados [51] in 1968. A characteristic special case of his result is as
follows. If fez) is regular in ! z: < 1, and, with the exception of z = 1,
also in the circle; z -;- 8 I ~ 1 + 8 with 0 < 8 < ";-0-' and if, further, fez)
satisfies for I z! ~ I a Lipschitz condition with the exponent CY, then

(72.1)

for a suitable R;(x). For comparison, polynomial approximation would
give only O(1/n~). According to a remark of Newman, (72.1) could not be
improved to an upper estimate sharper than 0(1/n20.).

PROBLEM LXXXV (L. Leindeler). Can (72.1) be improved to 0(I/n2')?

The domain of analyticity ofevery elementf(z) of Szabados's class contains
the unit disk as a proper subdomain. Now denote by S the class of functions
that are analytic in I z I < 1, and continuous in : z I ~ I and which cannot
be continued analytically beyond i z i = 1.

PROBLHI LXXXVI. Is it true that, for f EO S, we have

X( ( 1 'II f(x) - R~' z)! = 0(1) w I, - ,
, n I

i z: ~ 1,

with a suitable R; ? Here w(f, 8) denotes the modulus of continuity off

If this is true, then probably it is the best possible inequality.

PROBLE~ LXXXVII. Is it true that there is no fo(z) EO 5 such that the best
approximation by polynomials of degree ~n of fez) is ~cl!n, but the best
approximation by such rational functions is <e-c2(nl

l/2
?
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73. i\ll these questions pertain to the case of one real or one cCITtplex
variable. I am not familiar with the literature on approxi!llatiorr of functions
of several real variables. There are a number of l''.atural questions whose
solutions are probably known; for instance, if 1T,jX, y) is a polynomial of
degree jL in x and lJ in y, and if1T/.LV is less than 1 in absolute value in a domain D
afthe .Y. y-plane, then what are the exact values of

I r-7 i
111ax I ~-: !lV i

D i ex l
and

Thus, I do not state them as open problems. On the other hand, I mentiorc
with some comments the following question, which is important for practical
purposes.

Let D be a bounded closed domain in the (x, y)-plane with a s!TIooth
boundary. Let i(x, y) be a function having continuous second partial
derivatives in D. The values of the function are known by observations at

N = (p.. + 1)(v + 1) ~ 1

different points of D which are denoted by P; = (x) . ]"i) E D. Let

/.L

1T~v(X, y) = I I CllI2X\J~'
!l=G £2=0

be the polynomial having the property

(73.3)

Now choose the points Pl , ... , p.,; so that the determinant J(Ft , ...• P y ') of
the system is maximum:

•LI(P1 , ..• , psY

It is easy to see that the maximum in (73.4) is positive. With this choice of
the points PT" the polynomials (73.2)-(73.3) are uniquely determined.
Setting P = (x, y), we have
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Let 7T:v(P,f, D) be the best approximating polynomial to fin D with degrees
~fL and ~v. Since, obviously,

we have

N

L 7T:vCPj ) IlP, PI'···' PN ) = 7T:v(P),
j~I

(73.6)

N

7T"vCP) - 7T:iP,f, D) = 'L (j(P j ) - 7T;:;'(Pj )) • •lP, PI ,... , P,v). (73.7)
j~1

Let

max
FED

Then we have

* I deff(P) - 7T"v(P) I = d"vCf, D). (73.8)

Since from (73.5) follows

(73.9)

we have

j = 1,... , lV, (73.10)

i f(P) - 7TjP)i ~ (N + 1) d",.(f, D). (73.11)

The points PI ,... , P,v can be determined for not too large values of fL and v
by numerical methods. On the other hand, we have

PROBLEM LXXXVIII. What can be said about the distribution of
PI ,... , P,v , satisfying the extremal condition (73.4) if fL and v tend to infinity?

Finally, a problem which needs no comment.

PROBLEM LXXXIX (V. T. Sas). Do classes of fimctions (for instance,
on the unit square) exist, for which approximation in the supremum norm by
rational functions

is essentially bettcr than approximation by polynomials

if on'-v
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